本课程来自 深度之眼,部分截图来自课程视频。
【第一章 线性代数】1.8SVD分解的证明
在线LaTeX公式编辑器
任务详解:
这节课主要介绍了矩阵的奇异值分解(SVD分解),SVD分解的应用,多元线性回归等知识点。
掌握目标:
了解svd分解证明过程,以及svd分解的算法流程
之前的课程描述的是方阵,对称阵的处理,对于一般矩阵是怎么化简的呢,就是下面的SVD分解的内容。
PS:用H或者T都是表示矩阵的转置,一个是复矩阵,一个实矩阵的写法,下面讨论的都是实矩阵,但参考书上针对复矩阵,所以用的H ,这里我们认为两个木有区别。
奇异值分解的证明过程有点复杂,虽然编程序的时候可以做调包侠,但是理解其来龙去脉是很有必要的。
1.矩阵的奇异值分解(SVD分解)
为了论述矩阵的奇异值与奇异值分解,需要下面的结论:
(1)设
A
∈
C
r
m
×
n
(
r
>
0
)
A\in C_r^{m\times n}(r>0)
A∈Crm×n(r>0),(这里m和n代表矩阵的行列,r是矩阵的秩)则
A
H
A
A^HA
AHA是Hermite矩阵,(如果矩阵A不包含复数,那么
A
H
=
A
T
A^H=A^T
AH=AT)且其特征值均是非负实数;
这里小小证明一下(本来是上节证明的内容,偷懒没写,现在补上):
A
T
A
A^TA
ATA写为:
x
T
A
T
A
x
=
(
A
x
)
T
A
x
x^TA^TAx=(Ax)^TAx
xTATAx=(Ax)TAx
这里x是向量,A是矩阵,那么Ax就是一个向量,令
z
=
A
x
z=Ax
z=Ax,上面就
=
z
T
z
=
∣
∣
z
∣
∣
2
≥
0
=z^Tz=||z||^2≥0
=zTz=∣∣z∣∣2≥0
因此可以断定
A
T
A
A^TA
ATA是半正定的,他的特征值
λ
i
≥
0
\lambda_i≥0
λi≥0
(2)
r
a
n
k
(
A
H
A
)
=
r
a
n
k
(
A
)
rank(A^HA)=rank(A)
rank(AHA)=rank(A);
证明:这里只要证明两者的解空间是一样的即可,因为上节讲解空间的时候有下面的结论
R
(
A
)
+
N
(
A
)
=
n
R(A)+N(A)=n
R(A)+N(A)=n
解空间N(A)一样,那么秩R(A)也就一样了,也就是要证明
A
T
A
x
=
0
A^TAx=0
ATAx=0和
A
x
=
0
Ax=0
Ax=0的解一样,就是x是前者的解也是后者的解。
分两种情况看:
第一种:x=0的时候,肯定是两个方程的解
第二种:对于
∀
x
≠
0
\forall x\neq0
∀x=0,有:
A
T
A
x
=
0
A^TAx=0
ATAx=0,要把
A
T
A^T
AT去掉,不能两边同时乘
A
T
A^T
AT的逆矩阵,因为
A
T
A^T
AT不一定有逆矩阵。所以我们方程两边同时乘
x
T
x^T
xT,得:
x
T
A
T
A
x
=
0
x^TA^TAx=0
xTATAx=0,即
(
A
x
)
T
A
x
=
0
(Ax)^TAx=0
(Ax)TAx=0,这里,由于x是向量,A是矩阵,Ax是一个向量
x
T
A
T
A
x
x^TA^TAx
xTATAx相当于求Ax的模长,模长等于0就意味着向量Ax中的每一项都是0,也就是
A
T
A
x
=
0
A^TAx=0
ATAx=0与
A
x
=
0
Ax=0
Ax=0解是一样的(解空间一样),因此秩也就一样。
(3)设
A
∈
C
r
m
×
n
A\in C_r^{m\times n}
A∈Crm×n,则
A
=
0
A=0
A=0的充要条件是
A
H
A
=
0
A^HA=0
AHA=0.
奇异值的定义
定义4.11:
A
∈
C
r
m
×
n
(
r
>
0
)
A\in C_r^{m\times n}(r>0)
A∈Crm×n(r>0),
A
H
A
A^HA
AHA的特征值为
λ
1
≥
λ
2
≥
…
≥
λ
r
>
λ
r
+
1
=
…
=
λ
n
=
0
\lambda_1≥\lambda_2≥…≥\lambda_r>\lambda_{r+1}=…=\lambda_n=0
λ1≥λ2≥…≥λr>λr+1=…=λn=0则称
σ
i
=
λ
i
(
i
=
1
,
2
,
…
,
n
)
\sigma_i=\sqrt{\lambda_i}(i=1,2,…,n)
σi=λi(i=1,2,…,n)为A的奇异值;当A为零矩阵时,它的奇异值都是0。
说人话:根据定义可以得到
A
H
A
A^HA
AHA的特征值有r个是大于0的,其他都是等于0的。于是有下面定理:
---------------------------------------------------------割你没商量------------------------------------------------------
定理4.16:设
A
∈
C
r
m
×
n
(
r
>
0
)
A\in C_r^{m\times n}(r>0)
A∈Crm×n(r>0),则存在m阶正交矩阵U和n阶正交矩阵V,使得
U
H
A
V
=
[
Σ
0
0
0
]
U^HAV=\begin{bmatrix} \Sigma &0 \\ 0 & 0 \end{bmatrix}
UHAV=[Σ000]
其中
Σ
=
d
i
a
g
(
σ
1
,
σ
2
,
…
,
σ
r
)
\Sigma=diag(\sigma_1,\sigma_2,…,\sigma_r)
Σ=diag(σ1,σ2,…,σr),而。
σ
i
(
i
=
1
,
2
,
…
,
r
)
\sigma_i(i=1,2,…,r)
σi(i=1,2,…,r)为矩阵A的全部非零奇异值。注意这里的矩阵shape,
U
H
U^H
UH是n×m的,A是m×n,V是n×n,
U
H
A
V
U^HAV
UHAV是m×n的。
证明
证明:
A
H
A
A^HA
AHA(写成
A
T
A
A^TA
ATA是一样的,原因之前有讲,不啰嗦了)是对称阵(
(
A
T
A
)
T
=
A
T
(
A
T
)
T
=
A
T
A
(A^TA)^T=A^T(A^T)^T=A^TA
(ATA)T=AT(AT)T=ATA,就是满足
A
T
=
A
A^T=A
AT=A),所以可以满足对角化的操作(一个对称阵A,可以找到正交方阵P,使得
P
T
A
P
=
对
角
阵
P^TAP=对角阵
PTAP=对角阵,当然由于P是正交方阵,所以有
P
T
=
P
−
1
P^T=P^{-1}
PT=P−1,故
P
−
1
A
P
=
对
角
阵
P^{-1}AP=对角阵
P−1AP=对角阵也成立),所以可以有下面的等式(为了和前面的不一样,这里就不用P,用V来表示咯,为什么,因为定理里面用的是V撒,V当然是正交矩阵了,复矩阵就叫酉矩阵):
V
H
(
A
H
A
)
V
=
[
λ
1
⋱
λ
n
]
=
[
Σ
2
0
0
0
]
(1)
V^H(A^HA)V=\begin{bmatrix} \lambda_1 && \\ &\ddots&\\ &&&\lambda_n \end{bmatrix}=\begin{bmatrix} \Sigma^2 &0 \\ 0 & 0 \end{bmatrix} \tag{1}
VH(AHA)V=⎣⎡λ1⋱λn⎦⎤=[Σ2000](1)
根据奇异值的定理可知,从
λ
1
,
.
.
.
,
λ
n
\lambda_1,...,\lambda_n
λ1,...,λn这些个特征值中,有一些个是大于0,一些个是等于0的,即:
λ
1
≥
λ
2
≥
…
≥
λ
r
>
λ
r
+
1
=
…
=
λ
n
=
0
\lambda_1≥\lambda_2≥…≥\lambda_r>\lambda_{r+1}=…=\lambda_n=0
λ1≥λ2≥…≥λr>λr+1=…=λn=0,上式中的
Σ
2
=
[
σ
1
2
⋱
σ
r
2
]
=
[
λ
1
⋱
λ
r
]
\Sigma^2=\begin{bmatrix} \sigma_1^2 && \\ &\ddots&\\ &&&\sigma_r^2 \end{bmatrix}=\begin{bmatrix} \lambda_1 && \\ &\ddots&\\ &&&\lambda_r \end{bmatrix}
Σ2=⎣⎡σ12⋱σr2⎦⎤=⎣⎡λ1⋱λr⎦⎤
Σ
\Sigma
Σ的shape是r*r的。
接下来将n×n的方阵V分两块:
V
=
[
V
1
⋮
V
2
]
V=[V_1\vdots V_2]
V=[V1⋮V2],其中
V
1
∈
C
r
n
×
r
,
V
2
∈
C
r
n
×
(
n
−
r
)
V_1\in C_r^{n\times r},V_2\in C_r^{n\times (n-r)}
V1∈Crn×r,V2∈Crn×(n−r)
等式(1)两边同时乘上V,由于V是正交
V
V
H
=
E
VV^H=E
VVH=E,改写为:
A
H
A
V
=
V
[
Σ
2
0
0
0
]
(2)
A^HAV=V\begin{bmatrix} \Sigma^2 &0 \\ 0 & 0 \end{bmatrix} \tag{2}
AHAV=V[Σ2000](2)
由于
V
=
[
V
1
⋮
V
2
]
V=[V_1\vdots V_2]
V=[V1⋮V2],等式2可以写为:
A
H
A
[
V
1
⋮
V
2
]
=
[
V
1
⋮
V
2
]
[
Σ
2
0
0
0
]
A^HA[V_1\vdots V_2]=[V_1\vdots V_2]\begin{bmatrix} \Sigma^2 &0 \\ 0 & 0 \end{bmatrix}
AHA[V1⋮V2]=[V1⋮V2][Σ2000]
两边展开:
[
A
H
A
V
1
⋮
A
H
A
V
2
]
=
[
V
1
Σ
2
⋮
0
]
(3)
[A^HAV_1\vdots A^HAV_2]=[V_1\Sigma^2\vdots 0]\tag{3}
[AHAV1⋮AHAV2]=[V1Σ2⋮0](3)
等式(3)中
⋮
\vdots
⋮两边的东西都应该对应相等,所以有:
A
H
A
V
1
=
V
1
Σ
2
(4)
A^HAV_1=V_1\Sigma^2\tag{4}
AHAV1=V1Σ2(4)
A
H
A
V
2
=
0
(5)
A^HAV_2=0\tag{5}
AHAV2=0(5)
等式(4)左右两边分别乘上
V
1
H
V_1^H
V1H得:
V
1
H
A
H
A
V
1
=
Σ
2
(6)
V_1^HA^HAV_1=\Sigma^2\tag{6}
V1HAHAV1=Σ2(6)
等式(6)左右两边的左右两边同时乘上
Σ
−
1
\Sigma^{-1}
Σ−1
Σ
−
1
V
1
H
A
H
A
V
1
Σ
−
1
=
Σ
−
1
Σ
2
Σ
−
1
(7)
\Sigma^{-1}V_1^HA^HAV_1\Sigma^{-1}=\Sigma^{-1}\Sigma^2\Sigma^{-1}\tag{7}
Σ−1V1HAHAV1Σ−1=Σ−1Σ2Σ−1(7)
这里
Σ
=
[
σ
1
⋱
σ
r
]
\Sigma=\begin{bmatrix} \sigma_1 && \\ &\ddots&\\ &&&\sigma_r \end{bmatrix}
Σ=⎣⎡σ1⋱σr⎦⎤是对角阵,所以
Σ
−
1
=
[
σ
1
−
1
⋱
σ
r
−
1
]
\Sigma^{-1}=\begin{bmatrix} \sigma_1^{-1} && \\ &\ddots&\\ &&&\sigma_r^{-1} \end{bmatrix}
Σ−1=⎣⎡σ1−1⋱σr−1⎦⎤也是是对角阵,对角阵的转置和它本身一样(
A
T
=
A
A^T=A
AT=A),所以:
Σ
−
1
=
(
Σ
−
1
)
T
=
(
Σ
−
1
)
H
(8)
\Sigma^{-1}=(\Sigma^{-1})^T=(\Sigma^{-1})^H\tag{8}
Σ−1=(Σ−1)T=(Σ−1)H(8)
根据公式(8),等式(7)可以写为:
(
Σ
−
1
)
T
V
1
H
A
H
A
V
1
Σ
−
1
=
Σ
−
1
Σ
2
Σ
−
1
(\Sigma^{-1})^TV_1^HA^HAV_1\Sigma^{-1}=\Sigma^{-1}\Sigma^2\Sigma^{-1}
(Σ−1)TV1HAHAV1Σ−1=Σ−1Σ2Σ−1
把前面几个的转置提取到括号外(位置要变化),
Σ
−
1
Σ
2
Σ
−
1
=
E
\Sigma^{-1}\Sigma^2\Sigma^{-1}=E
Σ−1Σ2Σ−1=E,这里写为
I
r
I_r
Ir(r是维度),得:
(
A
V
1
Σ
−
1
)
T
(
A
V
1
Σ
−
1
)
=
I
r
(9)
(AV_1\Sigma^{-1})^T(AV_1\Sigma^{-1})=I_r\tag{9}
(AV1Σ−1)T(AV1Σ−1)=Ir(9)
等式(5)左右两边分别乘上
V
2
H
V_2^H
V2H得:
V
2
H
A
H
A
V
2
=
0
V_2^HA^HAV_2=0
V2HAHAV2=0
(
A
V
2
)
H
A
V
2
=
0
(10)
(AV_2)^HAV_2=0\tag{10}
(AV2)HAV2=0(10)
等式(9)可以看做是一个矩阵(
A
V
2
AV_2
AV2)的转置乘以矩阵本身等于0的形式。根据开篇的结论三(设
A
∈
C
r
m
×
n
A\in C_r^{m\times n}
A∈Crm×n,则
A
=
0
A=0
A=0的充要条件是
A
H
A
=
0
A^HA=0
AHA=0.)可知:
A
V
2
=
0
(11)
AV_2=0\tag{11}
AV2=0(11)
到这个地方,我们分别得到了两个等式(9)(11)。
对于等式(9),令
U
1
=
A
V
1
Σ
−
1
U_1=AV_1\Sigma^{-1}
U1=AV1Σ−1,则有:
U
1
H
U
1
=
I
r
(12)
U_1^HU_1=I_r\tag{12}
U1HU1=Ir(12)
再次看shape,A是m×n,
V
1
V_1
V1是n×r,
Σ
−
1
\Sigma^{-1}
Σ−1是r×r的,所以
U
1
U_1
U1是m×r的。如果记
U
1
U_1
U1是由r个向量
u
1
,
u
2
,
.
.
.
,
u
r
u_1,u_2,...,u_r
u1,u2,...,ur构成,上式(12)可以写成:
U
1
H
U
1
=
[
u
1
T
⋮
u
r
T
]
[
u
1
⋯
u
r
]
=
I
r
(13)
U_1^HU_1=\begin{bmatrix} u_1^T \\ \vdots\\ u_r^T \end{bmatrix}\begin{bmatrix} u_1&\cdots&u_r \\ \end{bmatrix}=I_r\tag{13}
U1HU1=⎣⎢⎡u1T⋮urT⎦⎥⎤[u1⋯ur]=Ir(13)
等式(13)中的左边展开后的每一项
u
i
T
u
j
u_i^Tu_j
uiTuj满足:
{
u
i
T
u
j
=
1
i
=
j
,
u
i
T
u
j
=
0
i
≠
j
\left\{\begin{matrix}u_i^Tu_j=1\quad i=j,\\u_i^Tu_j=0\quad i\neq j\end{matrix}\right.
{uiTuj=1i=j,uiTuj=0i=j
因此说构成的
U
1
U_1
U1的r个向量是两两正交的单位向量。由于
U
1
U_1
U1的shape是m×r,这r个向量
u
i
∈
ℜ
m
u_i\in\real^m
ui∈ℜm(说人话:r是m维的列向量),这里可以根据定理,直接把r维向量扩充到m维上。
---------------------------------------------------------割你没商量------------------------------------------------------
定理可视化实例补充:
二维向量
[
1
0
0
]
[
0
1
0
]
\begin{bmatrix}1 \\ 0\\0 \end{bmatrix}\begin{bmatrix}0 \\ 1\\0 \end{bmatrix}
⎣⎡100⎦⎤⎣⎡010⎦⎤可以扩充为三维向量:
[
1
0
0
]
[
0
1
0
]
[
0
0
1
]
\begin{bmatrix}1 \\ 0\\0 \end{bmatrix}\begin{bmatrix}0 \\ 1\\0 \end{bmatrix}\begin{bmatrix}0 \\ 0\\1 \end{bmatrix}
⎣⎡100⎦⎤⎣⎡010⎦⎤⎣⎡001⎦⎤
---------------------------------------------------------割你没商量------------------------------------------------------
U
1
U_1
U1扩充为
C
m
C^m
Cm(说人话:m维)的标准正交基,把后来扩展的向量记为:
u
r
+
1
,
.
.
.
,
u
m
u_{r+1},...,u_m
ur+1,...,um,并构造成矩阵:
U
2
=
(
u
r
+
1
,
.
.
.
,
u
m
)
U_2=(u_{r+1},...,u_m)
U2=(ur+1,...,um),则:
U
=
[
U
1
⋮
U
2
]
=
(
u
1
,
u
2
,
⋯
,
u
r
,
u
r
+
1
,
⋯
,
u
m
)
U=[U_1\vdots U_2]=(u_1,u_2,\cdots,u_r,u_{r+1},\cdots,u_m)
U=[U1⋮U2]=(u1,u2,⋯,ur,ur+1,⋯,um)
U是m阶酉(正交)矩阵,且有:
U
1
H
U
1
=
I
r
,
U
2
H
U
1
=
0
(15)
U_1^HU_1=I_r,U_2^HU_1=0\tag{15}
U1HU1=Ir,U2HU1=0(15)
下面U构造好后,就可以开始验证要证明的定理
U
H
A
V
U^HAV
UHAV啦,因为
V
=
[
V
1
⋮
V
2
]
V=[V_1\vdots V_2]
V=[V1⋮V2]:
U
H
A
V
=
U
H
[
A
V
1
⋮
A
V
2
]
(14)
U^HAV=U^H[AV_1\vdots AV_2]\tag{14}
UHAV=UH[AV1⋮AV2](14)
由
U
=
[
U
1
⋮
U
2
]
U=[U_1\vdots U_2]
U=[U1⋮U2]可以知道:
U
H
=
[
U
1
H
U
2
H
]
U^H=\begin{bmatrix}U_1^H \\ U_2^H \end{bmatrix}
UH=[U1HU2H];
由
U
1
U_1
U1的设定
U
1
=
A
V
1
Σ
−
1
U_1=AV_1\Sigma^{-1}
U1=AV1Σ−1,两边的右边同时乘以
Σ
\Sigma
Σ,得
U
1
Σ
=
A
V
1
U_1\Sigma=AV_1
U1Σ=AV1;
由等式(11);
以上三个东西带入等式(14)
U
H
A
V
=
[
U
1
H
U
2
H
]
[
U
1
Σ
⋮
0
]
=
[
U
1
H
U
1
Σ
0
U
2
H
U
1
Σ
0
]
U^HAV=\begin{bmatrix}U_1^H \\ U_2^H \end{bmatrix}[U_1\Sigma\vdots 0]=\begin{bmatrix}U_1^HU_1\Sigma&0 \\ U_2^HU_1\Sigma&0 \end{bmatrix}
UHAV=[U1HU2H][U1Σ⋮0]=[U1HU1ΣU2HU1Σ00]
把等式(15)带入
U
H
A
V
=
[
Σ
0
0
0
]
U^HAV=\begin{bmatrix} \Sigma &0 \\ 0 & 0 \end{bmatrix}
UHAV=[Σ000]
到这里证明就好了,但是上面的等式还可以在等式的两边左右分别乘以
U
,
V
H
U,V^H
U,VH。
U
U
H
A
V
V
H
=
U
[
Σ
0
0
0
]
V
H
UU^HAVV^H=U\begin{bmatrix} \Sigma &0 \\ 0 & 0 \end{bmatrix}V^H
UUHAVVH=U[Σ000]VH
单位阵退散后变成:
A
=
U
[
Σ
0
0
0
]
V
H
A=U\begin{bmatrix} \Sigma &0 \\ 0 & 0 \end{bmatrix}V^H
A=U[Σ000]VH
例子
求矩阵
A
=
[
1
0
1
0
1
1
0
0
0
]
A=\begin{bmatrix} 1&0&1 \\ 0 & 1& 1 \\ 0 & 0& 0 \end{bmatrix}
A=⎣⎡100010110⎦⎤的奇异值分解。
解:
B
=
A
T
A
=
[
1
0
1
0
1
1
1
1
2
]
B=A^TA=\begin{bmatrix} 1&0&1 \\ 0 & 1& 1 \\ 1 & 1& 2 \end{bmatrix}
B=ATA=⎣⎡101011112⎦⎤的特征值是
λ
1
=
3
,
λ
2
=
1
,
λ
3
=
0
\lambda_1=3,\lambda_2=1,\lambda_3=0
λ1=3,λ2=1,λ3=0,对应的特征向量依次为:
ξ
1
=
[
1
1
2
]
,
ξ
2
=
[
1
−
1
0
]
,
ξ
1
=
[
1
1
−
1
]
\xi_1=\begin{bmatrix}1\\ 1 \\ 2\end{bmatrix},\xi_2=\begin{bmatrix}1\\ -1 \\ 0\end{bmatrix},\xi_1=\begin{bmatrix}1\\ 1 \\ -1\end{bmatrix}
ξ1=⎣⎡112⎦⎤,ξ2=⎣⎡1−10⎦⎤,ξ1=⎣⎡11−1⎦⎤
Σ
=
[
3
0
0
1
]
\Sigma=\begin{bmatrix} \sqrt{3} &0 \\ 0 &1 \end{bmatrix}
Σ=[3001]
A
T
A
A^TA
ATA是对称矩阵,因此其特征向量是两两正交的,把上面的三个
ξ
\xi
ξ除以模长,得到
V
=
[
1
6
1
2
1
3
1
6
−
1
2
1
3
2
6
0
−
1
3
]
V=\begin{bmatrix} \frac{1}{\sqrt{6}}&\frac{1}{\sqrt{2}}&\frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{6}} & -\frac{1}{\sqrt{2}}& \frac{1}{\sqrt{3}}\\ \frac{2}{\sqrt{6}} & 0& -\frac{1}{\sqrt{3}} \end{bmatrix}
V=⎣⎢⎡61616221−2103131−31⎦⎥⎤
根据公式
U
1
=
A
V
1
Σ
−
1
U_1=AV_1\Sigma^{-1}
U1=AV1Σ−1计算
U
1
U_1
U1,其中A在题目已经给了,
V
=
[
V
1
⋮
V
2
]
V=[V_1\vdots V_2]
V=[V1⋮V2],其中
V
1
∈
C
r
n
×
r
,
V
2
∈
C
r
n
×
(
n
−
r
)
V_1\in C_r^{n\times r},V_2\in C_r^{n\times (n-r)}
V1∈Crn×r,V2∈Crn×(n−r),由于R(A)=2,所以r=2,取V的前面两列,
V
1
=
[
1
6
1
2
1
6
−
1
2
2
6
0
]
V_1=\begin{bmatrix} \frac{1}{\sqrt{6}}&\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{6}} & -\frac{1}{\sqrt{2}}\\ \frac{2}{\sqrt{6}} & 0 \end{bmatrix}
V1=⎣⎢⎡61616221−210⎦⎥⎤,
Σ
−
1
=
[
1
3
0
0
1
]
\Sigma^{-1}=\begin{bmatrix} \frac{1}{\sqrt{3}} &0 \\ 0 &1 \end{bmatrix}
Σ−1=[31001],最后算出来:
U
1
=
A
V
1
Σ
−
1
=
[
1
2
1
2
1
2
−
1
2
0
0
]
U_1=AV_1\Sigma^{-1}=\begin{bmatrix} \frac{1}{\sqrt{2}} &\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} &-\frac{1}{\sqrt{2}}\\ 0&0 \end{bmatrix}
U1=AV1Σ−1=⎣⎡2121021−210⎦⎤
这里只构造出
U
1
U_1
U1,还要弄
U
2
U_2
U2,使得
U
=
[
U
1
⋮
U
2
]
U=[U_1\vdots U_2]
U=[U1⋮U2]
取
U
2
=
[
0
0
1
]
U_2=\begin{bmatrix}0\\ 0 \\ 1\end{bmatrix}
U2=⎣⎡001⎦⎤
U
=
[
U
1
⋮
U
2
]
=
[
1
2
1
2
0
1
2
−
1
2
0
0
0
1
]
U=[U_1\vdots U_2]=\begin{bmatrix} \frac{1}{\sqrt{2}}&\frac{1}{\sqrt{2}}&0 \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}}&0\\ 0& 0& 1 \end{bmatrix}
U=[U1⋮U2]=⎣⎡2121021−210001⎦⎤
则A的奇异值分解为:
A
=
U
[
3
0
0
0
1
0
0
0
0
]
V
T
A=U\begin{bmatrix} \sqrt{3}&0&0 \\ 0 & 1&0\\ 0& 0& 0 \end{bmatrix}V^T
A=U⎣⎡300010000⎦⎤VT