【线性代数】1.8SVD分解的证明

本文详细介绍了奇异值分解(SVD),包括SVD的概念、奇异值定义,以及SVD分解的证明过程。同时,通过两个不同的方法展示了如何求解矩阵的奇异值分解,并证明了矩阵ATA与AAT的非零特征值集合相同。
摘要由CSDN通过智能技术生成

矩阵的奇异值分解(SVD分解)

0.准备

为了论述矩阵的奇异值与奇异值分解,需要下面的结论:
(1)设 A ∈ C r m × n ( r > 0 ) A\in C_r^{m\times n}(r>0) ACrm×n(r>0),则 A H A A^HA AHA是Hermite矩阵,(如果矩阵 A A A不包含复数,那么 A H = A T A^H=A^T AH=AT)且其特征值均是非负实数;
(2) r a n k ( A H A ) = r a n k ( A ) rank\left(A^HA\right)=rank\left(A\right) rank(AHA)=rank(A)
(3)设 A ∈ C m × n A\in C^{m\times n} ACm×n,则 A = O A=O A=O的充要条件是 A H A = O A^HA=O AHA=O

证明:
(1)设: A T A x = λ x ( x ≠ 0 ) A^TAx=\lambda x(x\neq0) ATAx=λx(x=0),则 x T A T A x = λ x T x x^TA^TAx=\lambda x^Tx xTATAx=λxTx,即 ∥ A x ∥ 2 = λ ∥ x ∥ 2 , \left\|Ax\right\|^2=\lambda\left\|x\right\|^2, Ax2=λx2, λ ⩾ 0 \lambda\geqslant0 λ0,同理 A T A A^TA ATA的特征值也全是非负实数.
(2)证明方程组 A H A x = 0 ( 1 ) A^HAx=0(1) AHAx=0(1) A x = 0 ( 2 ) Ax=0(2) Ax=0(2)同解
   如果 α \alpha α是(2)的解,则 A α = 0 A\alpha=0 Aα=0,显然有 A T A x = 0 A^TAx=0 ATAx=0,即 α \alpha α是(1)的解,故(2)的解全是(1)的解.
   若 α \alpha α是(1)的解,即 A T A α = 0 A^TA\alpha=0 ATAα=0,那么 α T A T A α = 0 \alpha^TA^TA\alpha=0 αTATAα=0,即 ( A α ) T ( A α ) = 0 \left(A\alpha\right)^T\left(A\alpha\right)=0 (Aα)T(Aα)=0.从而 ∥ A α ∥ 2 = 0 \left\|A\alpha\right\|^2=0 Aα2=0,故 A α = 0 A\alpha=0 Aα=0.所以 α \alpha α必是(2)的解,即 (1)的解全是(2)的解.
   综上所述,方程组(1)与(2)同解,即 r a n k ( A H A ) = r a n k ( A ) rank\left(A^HA\right)=rank\left(A\right) rank(AHA)=rank(A).
(3)充分性: A = O ⇒ A T A = O A=O\Rightarrow A^TA=O A=OATA=O,成立.
   必要性:将 A A A写成列向量形式, A = ( α 1 , α 2 , α 3 , ⋯   , α n ) A=(\alpha_1,\alpha_2,\alpha_3,\cdots,\alpha_n) A=(α1,α2,α3,,αn),则
    A T A = [ α 1 T α 2 T α 3 T ⋮ α n T ] ( α 1 , α 2 , α 3 , ⋯   , α n ) = O ⇒ α i T α i = 0 ⇒ α i A^TA=\begin{bmatrix}\alpha_1^T\\\alpha_2^T\\\alpha_3^T\\\vdots\\\alpha_n^T\end{bmatrix}(\alpha_1,\alpha_2,\alpha_3,\cdots,\alpha_n)=O\Rightarrow\alpha_i^T\alpha_i=0\Rightarrow\alpha_i ATA=α1Tα2Tα3TαnT(α1,α2,α3,,αn)=OαiTαi=0αi为零向量,因此矩阵 A A A为零矩阵.

1.奇异值

  设 A ∈ C r m × n ( r > 0 ) A\in C_r^{m\times n}(r>0) ACrm×n(r>0) A H A A^HA AHA的特征值为 λ 1 ⩾ λ 2 ⩾ ⋯ ⩾ λ r > λ r + 1 = ⋯ = λ n = 0 \lambda_1\geqslant\lambda_2\geqslant\cdots\geqslant\lambda_{r>}\lambda_{r+1}=\cdots=\lambda_n=0 λ1λ2λr>λr+1==λn=0则称 σ i = λ i ( i = 1 , 2 , ⋯   , n ) \sigma_i=\sqrt{\lambda_i}(i=1,2,\cdots,n) σi=λi (i=1,2,,n) A A A的奇异值;当 A A A为零矩阵时,它的奇异值都是0.

2.SVD分解

A ∈ C r m × n ( r > 0 ) A\in C_r^{m\times n}(r>0) ACrm×n(r>0),则存在 m m m阶正交矩阵 U U U n n n阶正交矩阵 V V V,满足 A = U [ σ 1 ⋱ σ r O ] V T = U Σ V T = σ 1 u 1 v 1 T + ⋯ + σ r u r v r T \boldsymbol A=\boldsymbol U\begin{bmatrix}\sigma_1&&&\\&\ddots&&\\&&\sigma_r&\\&&&O\end{bmatrix}\boldsymbol V^{\mathbf T}=\boldsymbol U\boldsymbol\Sigma\boldsymbol V^{\mathbf T}=\sigma_1u_1v_1^T+\cdots+\sigma_ru_rv_r^T A=Uσ1σrOVT=UΣVT=σ1u1v1T++σrurvrT
U T A V = [ Σ O O O ] \boldsymbol U^{\mathbf T}\boldsymbol A\boldsymbol V=\begin{bmatrix}\mathbf\Sigma&\mathbf O\\\mathbf O&\mathbf O\end{bmatrix} UTAV=[ΣOOO]
其中

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值