泰勒公式与极值问题

泰勒定理(带Lagrange余项):如果函数$f(x)$在$x_0$的领域$U(x_0)$内具有直到$(n+1)$阶的导函数,则$\forall x\in U(x_0)$,存在$\theta\in(0,1)$,使得:

$$f(x)=f(x_0)+f^{'}(x_0)(x-x_0)+\frac{f^{''}(x_0)}{2!}(x-x_0)^2+\cdots+\frac{f^{n}(x_0)}{n!}(x-x_0)^n+R_n(x)$$

$$R_n(x)=\frac{f^{n+1}\left(x_0+\theta(x-x_0)\right)}{(n+1)!}(x-x_0)^{n+1}$$

$R_n(x)$称为拉格朗日余项。

转载于:https://www.cnblogs.com/lengyue365/p/4929908.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值