AI Agent技术框架进阶教程:Self Ask深度解析
系列课程进度
- 已完成章节:9章
- 当前更新内容:Self Ask框架详解
- 即将更新:Thinking and Sacrifici框架解析
目录
1. 知识回顾
Plan and Execute核心要点
框架对比速查表
特性 | Plan and Execute | Self Ask |
---|---|---|
核心机制 | 分步规划+执行反馈 | 自问自答验证 |
适用场景 | 多步骤复杂任务 | 知识推理任务 |
资源消耗 | 较高 | 中等 |
错误容忍度 | 低 | 高 |
2. Self Ask框架原理
Self-Ask框架的原理是通过将复杂任务分解成一系列简单的子任务,并通过自问自答的方式逐步完成任务。其核心思想是将一个复杂问题拆分为多个简单子问题,逐一解答后整合结果。这种方法类似于软件架构中的分层设计模式,通过递归和分治算法的思想,将复杂推理转化为可追踪的线性执行路径
工作原理
- 任务分解:将复杂任务分解成一系列相对简单的子任务。每个子任务都更容易解决,并且有助于逐步构建最终答案。
- 自问自答:模型首先提出一个问题,然后自己回答这个问题。例如,在文本摘要任务中,模型可以先问“文章的主要主题是什么?”,然后根据回答生成摘要
- 知识图谱:利用知识图谱存储和组织相关知识,帮助模型理解任务上下文和生成更准确的回答
三阶段验证机制
- 初始回答生成
- 自我质疑验证
def self_verify(response): questions = generate_validation_questions(response) for q in questions: if not validate_answer(q): return refine_response() return response
- 最终答案修正
技术架构图
Self-Ask框架的核心算法基于循环神经网络(RNN)和注意力机制。RNN能够处理序列数据并捕捉文本中的上下文信息,而注意力机制帮助模型聚焦于重要信息,提高推理效率
3. 实战代码解析
Self-Ask框架在处理复杂、多步骤的任务时表现出色,能够提升大语言模型的灵活性和适应性。通过逐步解答问题,模型能够更好地应对复杂任务和个性化需求,同时提高模型的可解释性。此外,Self-Ask框架还可以与外部工具结合,获取最新信息,进一步增强其推理能力
环境配置
# 使用0.2.x版本(兼容性保障)
pip install langchain==0.2.8 wikipedia python-dotenv
核心代码实现
from langchain.agents import SelfAskWithSearchAgent
from langchain.utilities import SerpAPIWrapper
# 初始化组件
search = SerpAPIWrapper(serpapi_api_key="your_key")
agent = SelfAskWithSearchAgent.from_llm_and_tools(
llm=OpenAI(temperature=0.3),
tools=[search],
verbose=True
)
# 执行示例
question = "上一任美国总统是谁?给出任职时间线"
result = agent.run(question)
# 打印验证过程
print(f"\n验证轨迹:{agent.memory}")
print(f"\n最终答案:{result}")
执行结果示例
[初始回答生成]
乔·拜登是现任美国总统(2021-)
[自我验证]
1. 验证问题:唐纳德·特朗普任期是否在2021年前?
- 验证结果:是(2017-2021)
2. 验证问题:是否有中间总统?
- 验证结果:否
[最终修正]
上一任美国总统是唐纳德·特朗普(2017-2021)
4. 版本迁移指南
0.2.x → 0.3.x适配要点
- 模块路径变更:
# 旧版 from langchain.agents import SelfAskWithSearchAgent # 新版 from langchain_experimental.self_ask import SelfAskWithSearchAgent
- 工具调用方式优化:
# 新增异步支持 await agent.arun(question)
- 记忆系统升级:
# 新增记忆持久化接口 agent.save_memory("memory.json")
5. 最佳实践建议
提示工程优化
CUSTOM_PROMPT = """
你需要执行以下步骤:
1. 生成初步答案
2. 提出3个关键验证问题
3. 依次验证每个问题
4. 根据验证结果修正答案
示例格式:
问题:[用户问题]
步骤1:[初步答案]
步骤2:验证问题:
- [问题1]
- [问题2]
- [问题3]
步骤3:验证结果:
- [问题1答案]
- [问题2答案]
- [问题3答案]
步骤4:最终答案:[整合验证后的答案]
"""
# 导入必要的库
import tensorflow as tf
# 定义模型结构
class SelfAskModel(tf.keras.Model):
def __init__(self, vocab_size, embedding_dim, hidden_dim):
super(SelfAskModel, self).__init__()
self.embedding = tf.keras.layers.Embedding(vocab_size, embedding_dim)
self.rnn = tf.keras.layers.LSTM(hidden_dim)
self.attention = tf.keras.layers.MultiHeadAttention(num_heads=8)
self.dense = tf.keras.layers.Dense(vocab_size)
def call(self, inputs):
# 将输入词嵌入到向量空间
embedded = self.embedding(inputs)
# 使用RNN处理序列数据
rnn_output = self.rnn(embedded)
# 使用注意力机制聚焦于重要信息
context_vector = self.attention(rnn_output, rnn_output, rnn_output)[0]
# 将上下文向量输入到全连接层,生成输出
output = self.dense(context_vector)
return output
# 实例化模型
model = SelfAskModel(vocab_size=10000, embedding_dim=128, hidden_dim=256)
# 训练模型
# ...
数据安全策略
- 敏感信息过滤:
def sanitize_input(text): return re.sub(r'\b(api_key|password)\b', '[REDACTED]', text)
- 访问频率控制:
from ratelimit import limits @limits(calls=5, period=60) # 每分钟最多5次调用 def safe_api_call(): # API调用逻辑
6. 常见问题解答
典型问题排查
问题现象 | 解决方案 | 调试命令 |
---|---|---|
验证循环超时 | 设置max_validation_rounds参数 | agent.debug=True |
知识库查询失败 | 检查API密钥有效期 | print(search.status) |
结果不一致 | 增加验证问题数量 | agent.num_questions=5 |
性能优化技巧
- 缓存机制:
from functools import lru_cache @lru_cache(maxsize=100) def cached_search(query): return search.run(query)
- 批量处理:
# 支持批量问题处理 agent.batch_run(questions)
# 课程代码统一管理建议
git clone https://github.com/agent-course/codebase.git
cd codebase && git checkout v0.2-stable