进阶篇09self-Ask-大模型

AI Agent技术框架进阶教程:Self Ask深度解析

系列课程进度

  • 已完成章节:9章
  • 当前更新内容:Self Ask框架详解
  • 即将更新:Thinking and Sacrifici框架解析

目录

  1. 知识回顾
  2. Self Ask框架原理
  3. 实战代码解析
  4. 版本迁移指南
  5. 最佳实践建议
  6. 常见问题解答

1. 知识回顾

Plan and Execute核心要点

需要工具
直接处理
未完成
已完成
用户请求
任务分解
子任务列表
执行判断
外部API调用
内部计算
状态更新
完成校验
结果聚合

框架对比速查表

特性Plan and ExecuteSelf Ask
核心机制分步规划+执行反馈自问自答验证
适用场景多步骤复杂任务知识推理任务
资源消耗较高中等
错误容忍度

2. Self Ask框架原理

Self-Ask框架的原理‌是通过将复杂任务分解成一系列简单的子任务,并通过自问自答的方式逐步完成任务。其核心思想是将一个复杂问题拆分为多个简单子问题,逐一解答后整合结果。这种方法类似于软件架构中的分层设计模式,通过递归和分治算法的思想,将复杂推理转化为可追踪的线性执行路径‌

工作原理
  • 任务分解‌:将复杂任务分解成一系列相对简单的子任务。每个子任务都更容易解决,并且有助于逐步构建最终答案。
  • 自问自答‌:模型首先提出一个问题,然后自己回答这个问题。例如,在文本摘要任务中,模型可以先问“文章的主要主题是什么?”,然后根据回答生成摘要‌
  • 知识图谱‌:利用知识图谱存储和组织相关知识,帮助模型理解任务上下文和生成更准确的回答‌

三阶段验证机制

  1. 初始回答生成
  2. 自我质疑验证
    def self_verify(response):
        questions = generate_validation_questions(response)
        for q in questions:
            if not validate_answer(q):
                return refine_response()
        return response
    
  3. 最终答案修正

技术架构图

Self-Ask框架的核心算法基于循环神经网络(RNN)和注意力机制。RNN能够处理序列数据并捕捉文本中的上下文信息,而注意力机制帮助模型聚焦于重要信息,提高推理效率‌

User Agent KnowledgeBase 原始问题 生成初始答案 生成验证问题 查询验证数据 返回验证结果 最终修正答案 User Agent KnowledgeBase

3. 实战代码解析

Self-Ask框架在处理复杂、多步骤的任务时表现出色,能够提升大语言模型的灵活性和适应性。通过逐步解答问题,模型能够更好地应对复杂任务和个性化需求,同时提高模型的可解释性。此外,Self-Ask框架还可以与外部工具结合,获取最新信息,进一步增强其推理能力‌

环境配置

# 使用0.2.x版本(兼容性保障)
pip install langchain==0.2.8 wikipedia python-dotenv

核心代码实现

from langchain.agents import SelfAskWithSearchAgent
from langchain.utilities import SerpAPIWrapper

# 初始化组件
search = SerpAPIWrapper(serpapi_api_key="your_key")
agent = SelfAskWithSearchAgent.from_llm_and_tools(
    llm=OpenAI(temperature=0.3),
    tools=[search],
    verbose=True
)

# 执行示例
question = "上一任美国总统是谁?给出任职时间线"
result = agent.run(question)

# 打印验证过程
print(f"\n验证轨迹:{agent.memory}")
print(f"\n最终答案:{result}")

执行结果示例

[初始回答生成]
乔·拜登是现任美国总统(2021-)

[自我验证]
1. 验证问题:唐纳德·特朗普任期是否在2021年前?
   - 验证结果:是(2017-2021)
2. 验证问题:是否有中间总统?
   - 验证结果:否

[最终修正]
上一任美国总统是唐纳德·特朗普(2017-2021)

4. 版本迁移指南

0.2.x → 0.3.x适配要点

  1. 模块路径变更
    # 旧版
    from langchain.agents import SelfAskWithSearchAgent
    
    # 新版
    from langchain_experimental.self_ask import SelfAskWithSearchAgent
    
  2. 工具调用方式优化
    # 新增异步支持
    await agent.arun(question)
    
  3. 记忆系统升级
    # 新增记忆持久化接口
    agent.save_memory("memory.json")
    

5. 最佳实践建议

提示工程优化

CUSTOM_PROMPT = """
你需要执行以下步骤:
1. 生成初步答案
2. 提出3个关键验证问题
3. 依次验证每个问题
4. 根据验证结果修正答案

示例格式:
问题:[用户问题]
步骤1:[初步答案]
步骤2:验证问题:
  - [问题1]
  - [问题2]
  - [问题3]
步骤3:验证结果:
  - [问题1答案]
  - [问题2答案]
  - [问题3答案]
步骤4:最终答案:[整合验证后的答案]
"""
# 导入必要的库
import tensorflow as tf

# 定义模型结构
class SelfAskModel(tf.keras.Model):
    def __init__(self, vocab_size, embedding_dim, hidden_dim):
        super(SelfAskModel, self).__init__()
        self.embedding = tf.keras.layers.Embedding(vocab_size, embedding_dim)
        self.rnn = tf.keras.layers.LSTM(hidden_dim)
        self.attention = tf.keras.layers.MultiHeadAttention(num_heads=8)
        self.dense = tf.keras.layers.Dense(vocab_size)

    def call(self, inputs):
        # 将输入词嵌入到向量空间
        embedded = self.embedding(inputs)
        # 使用RNN处理序列数据
        rnn_output = self.rnn(embedded)
        # 使用注意力机制聚焦于重要信息
        context_vector = self.attention(rnn_output, rnn_output, rnn_output)[0]
        # 将上下文向量输入到全连接层,生成输出
        output = self.dense(context_vector)
        return output

# 实例化模型
model = SelfAskModel(vocab_size=10000, embedding_dim=128, hidden_dim=256)

# 训练模型
# ...

数据安全策略

  1. 敏感信息过滤
    def sanitize_input(text):
        return re.sub(r'\b(api_key|password)\b', '[REDACTED]', text)
    
  2. 访问频率控制
    from ratelimit import limits
    @limits(calls=5, period=60)  # 每分钟最多5次调用
    def safe_api_call():
        # API调用逻辑
    

6. 常见问题解答

典型问题排查

问题现象解决方案调试命令
验证循环超时设置max_validation_rounds参数agent.debug=True
知识库查询失败检查API密钥有效期print(search.status)
结果不一致增加验证问题数量agent.num_questions=5

性能优化技巧

  1. 缓存机制
    from functools import lru_cache
    @lru_cache(maxsize=100)
    def cached_search(query):
        return search.run(query)
    
  2. 批量处理
    # 支持批量问题处理
    agent.batch_run(questions)
    

# 课程代码统一管理建议
git clone https://github.com/agent-course/codebase.git
cd codebase && git checkout v0.2-stable
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

monday_CN

72小时打磨,值得1元认可

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值