广度优先搜索算法
(Breadth-First-Search),又译作
宽度优先搜索
,或
横向优先搜索
,简称
BFS
,是一种
图形搜索算法
。简单的说,BFS是从
根节点
开始,沿着树的宽度遍历树的
节点
。如果所有节点均被访问,则算法中止。广度优先搜索的实现一般采用open-closed表。
作法
BFS是一种盲目搜寻法,目的是系统地展开并检查图中的所有节点,以找寻结果。换句话说,它并不考虑结果的可能位址,彻底地搜索整张图,直到找到结果为止。BFS并不使用经验法则算法。
从算法的观点,所有因为展开节点而得到的子节点都会被加进一个先进先出的伫列中。一般的实作里,其邻居节点尚未被检验过的节点会被放置在一个被称为 open 的容器中(例如伫列或是链表),而被检验过的节点则被放置在被称为 closed 的容器中。(open-closed表)
从
法兰克福开始执行广度优先搜索算法,所产生的广度优先搜索算法树。
|
s为初始点 while 从Q中选一点 /* 选最先插入进Q的点,则为广度遍历,可以说先进先出。*/ /* 选最后插入进Q的点,则为深度遍历,可以说后进先出。 */ if then /* N(v):v的邻接点 */ else return H=(R,T)
特性
空间复杂度
因为所有节点都必须被储存,因此BFS的空间复杂度为 O(|V| + |E|),其中 |V| 是节点的数目,而 |E| 是图中边的数目。注:另一种说法称BFS的空间复杂度为 ,其中 B 是最大分支系数,而 M 是树的最长路径长度。由于对空间的大量需求,因此BFS并不适合解非常大的问题。
时间复杂度
最差情形下,BFS必须寻找所有到可能节点的所有路径,因此其时间复杂度为 O(|V| + |E|),其中 |V| 是节点的数目,而 |E| 是图中边的数目。
完全性
广度优先搜索算法具有完全性。这意指无论图形的种类如何,只要目标存在,则BFS一定会找到。然而,若目标不存在,且图为无限大,则BFS将不收敛(不会结束)。
最佳解
若所有边的长度相等,广度优先搜索算法是最佳解——亦即它找到的第一个解,距离根节点的边数目一定最少;但对一般的图来说,BFS并不一定回传最佳 解。这是因为当图形为加权图(亦即各边长度不同)时,BFS仍然回传从根节点开始,经过边数目最少的解;而这个解距离根节点的距离不一定最短。这个问题可 以使用考虑各边权值,BFS的改良算法成本一致搜寻法(en:uniform-cost search)来解决。然而,若非加权图形,则所有边的长度相等,BFS就能找到最近的最佳解。