[论文阅读]Deep reinforcement learning‐based joint task offloading and resource allocation in multipath

本文提出一种基于深度强化学习的算法JTORA,针对计算密集型应用的车载网络,解决动态分布车辆下的任务卸载与资源分配问题,结果显示JTORA可降低任务延迟和成本。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Yin, C., Zhang, Y., Dong, P., & Zhang, H. (2024). Deep reinforcement learning‐based joint task offloading and resource allocation in multipath transmission vehicular networks. Transactions on Emerging. https://onlinelibrary.wiley.com/doi/abs/10.1002/ett.4930

论文中文名称:深度强化学习在多路径传输车载网络中的联合任务卸载和资源分配

摘要
随着车载网络中计算密集型应用不断增加,移动边缘计算(MEC)越来越广泛地应用于任务计算。MEC可以将车辆生成的任务卸载到MEC服务器,以减轻移动车辆上的计算限制。然而,大多数任务卸载算法无法应对车载网络中车辆动态分布的情况。此外,大多数任务卸载算法未考虑使用多路径传输方案的车载网络。因此,在多路径传输车载网络中实现高效的联合任务卸载和资源分配(JTORA)算法仍然是一个挑战。在本文中,我们介绍了一种新颖的多路径传输车载网络中的合作传输网络架构。车辆生成的计算任务可以通过多路径传输卸载到靠近基站的MEC服务器或通过云服务器。我们将任务卸载和资源分配问题表述为在多路径传输车载网络中的多目标优化问题。为了在合作传输网络架构下实现高效的任务卸载和资源分配,我们提出了一种基于深度强化学习(DRL)的多路径传输车载网络中的JTORA算法。JTORA将优化问题转化为DRL模型,并通过模型训练得到特定的优化策略。仿真结果表明,JTORA相比其他传统的启发式算法,能够实现更低的平均任务延迟和更低的平均任务成本。

在这里插入图片描述
图1:多路径传输车载网络中的合作传输网络架构。

在这里插入图片描述
图2:评论网络和行动者网络的架构。

在这里插入图片描述
图3:深度强化学习模型的网络架构。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

王知为

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值