[1区论文阅读]Computer vision based first floor elevation estimation from mobile LiDAR data

研究提出一种自动化方法,利用深度学习的yolov5模型从移动激光雷达数据中精确估计房屋首层高程,以支持洪水风险评估和保险费率设置。实验结果显示在Manville等地的MAE低至0.2英尺,提高了数据获取效率和准确性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Xia, J., & Gong, J. (2024). Computer vision based first floor elevation estimation from mobile LiDAR data. Automation in Construction, 159(105258), 105258. https://doi.org/10.1016/j.autcon.2023.105258

基于计算机视觉的移动激光雷达数据的首层高程估计。

摘要
房屋的首层高程(FFE)是洪水管理的重要信息,对于准确评估财产的洪水暴露风险至关重要。然而,在大范围地理尺度上缺乏可靠的FFE数据显著限制了减轻洪水风险的努力,例如提高财产的决策。传统的收集房屋高程数据的方法依赖于由持牌测量员或工程师进行的耗时而劳动密集的现场检查。在本文中,我们提出了一种从移动激光雷达点云数据中提取FFE的自动化和可扩展方法。我们使用经过微调的yolov5模型来检测点云的基于强度的投影上的门、窗户和车库门,实现了0.689的mAP@0.5:0.95。随后,使用检测到的对象来估计FFE。我们使用Manville、Ventnor和Longport中估计的FFE的Median Absolute Error(MAE)指标进行评估,分别得到了0.2英尺、0.27英尺和0.24英尺的值。FFE数据的可用性有望为设定洪水保险费率提供有价值的指导,并促进针对具有较高洪水风险的住宅建筑的收购计划的成本效益分析。

在这里插入图片描述
图1. 研究区域。洪水区域来自FEMA的洪水保险费率图(FIRM)。区域A、AE、AO、AH和VE都被确定为高风险的洪水危险区域。

在这里插入图片描述
图2. 基于移动点云数据的自动化和可扩展FFE提取方法的框架。

在这里插入图片描述
图3. 手动注释的建筑组件示例。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

王知为

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值