Kinematics-aware spatial-temporal feature transform for 3D human pose estimation

运动学感知时空特征变换用于3D人体姿势估计

3D人体姿势估计在各种人机交互应用中起着重要作用,但如何有效地提取和表示视频中人体结构的运动学特征一直是一个挑战。本文对人体属性进行了一些启发性的观察,这些属性具有人体姿势的启发式模式:1) 任何一种人体姿势都具有明显的时间一致性;2) 即使人体进行复杂的动作,局部关节之间仍然存在明显的时空相关性。根据观察到的模式,提出了一个局部结构特征编码器和一个时空特征变换,用于运动学感知特征的提取和增强。与现有的工作直接将每个骨关节投影到姿势特征而不加区分不同的方法不同,所提出的局部结构特征编码器将人体结构的局部连接属性映射到运动学特征中,这些特征是从人体骨关节的局部和全局组中提取的神经嵌入。由于局部和全局骨关节组是根据人体运动学预定义的,运动学特征能够表示身体的运动学。然后,通过提出的时空特征变换对运动学特征进行变换,以增强人体骨关节之间的时空相关性。整体框架有效地促进了3D姿势估计中人体运动学的表示。对常用数据集的大量实验结果表明,在相同的实验条件下,与最先进的方法相比,关节位置的平均误差显著减小。这一改进有望促使机器更好地理解人体姿势,从而构建更高级的以人为中心的自动化系统。

在这里插入图片描述

RoboND运动学项目是一个用于机器人运动学建模和控制的项目。在这个项目中,我们将学习如何对机器人进行运动学分析,并使用Python和ROS进行控制。 在机器人运动学中,我们研究机器人的运动和位置问题。通过对机器人的结构和关节运动的分析,我们可以确定机器人的位姿和末端执行器的位置。在这个项目中,我们将使用逆运动学分析来计算机器人的关节角度,以实现所期望的末端执行器的位置和姿态。 在项目过程中,我们将使用URDF(机器人描述文件)来建模机器人的几何和连接关系。我们将使用ROS(机器人操作系统)来实现机器人的控制和仿真。我们将学习如何使用ROS中的MoveIt包来进行路径规划和逆运动学计算。 在项目的实现过程中,我们将创建一个仿真环境,其中包括一个由关节连接的机器人、一个可移动的末端执行器和一个带有障碍物的场景。我们将使用Python编程语言来控制机器人的运动,并编写逆运动学算法来计算关节角度。我们还将使用ROS提供的工具和库来进行仿真和控制。 通过完成RoboND运动学项目,我们将掌握运动学分析和控制的基本概念和技能。我们将能够使用逆运动学计算机器人的关节角度,并将其应用于机器人的路径规划和控制。这将为我们进一步学习和研究机器人运动和控制领域奠定坚实的基础。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

王知为

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值