[ML]聚类之学习向量量化LVQ

LVQ是一种需要类别标记数据的聚类算法,它使用监督信息来辅助聚类过程。该算法涉及初始化的原型向量,并通过学习率参数调整这些向量以更好地匹配样本数据。LVQ的目标是生成能够代表不同类别的原型向量。
摘要由CSDN通过智能技术生成

LVQ,Learning Vector Quantization,学习向量量化

LVQ需要数据样本带有类别标记,学习过程中需要利用这些监督信息来辅助聚类。
接受代标记的数据集 D  和原型向量个数 k  ,以及初始化的原型向量标记 t i ,t i Y,i=1,2,,k  ,学习率参数 η(0,1)  。输出为原型向量 q 1 ,q 2 ,,q k  
为更清晰的描述LVQ,我们假设样本集为

D={ (x 1 ,y 1 ),(x 2 ,y 2 ),,(x m ,y m )} 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值