统计决策理论中的性能评估与误差率估计
1. 回归神经网络的平均思想
在回归神经网络中,简单平均和加权平均的思想被多次提出。有众多文献提及相关内容,如 Baxt(1992)、Benediktsson & Swain(1992)等。LeBlanc & Tibshirani(1993)不仅延续了这一思路,还考虑了通过自助法进行估计。同时,交叉验证和自助法都可视为校正训练集偏差(或其他度量)的方法,它们的使用方式与处理明显误差的方式相同。
Wolpert 的思想更为通用,我们可以在特征空间局部使用其方法,并允许权重随 x 缓慢变化。在他的通用方案中,将所有“0 级”模型(在留一法交叉验证下)的输出和真实响应作为“1 级”程序的输入,进而做出最终决策。堆叠泛化涵盖了各种组合模型输出的方法,这些方法可能会随 x 变化。Jacobs 等人(1991)采用了类似方法,他们同时训练所有分类器,且 0 级分类器无需在整个输入空间都表现良好。
2. 性能评估
2.1 性能的定义
性能评估首先需要明确性能的定义。基于总风险(期望损失)确定的贝叶斯规则,可作为性能评估的合适基础。当使用特定损失函数时,绘制误分类期望率与“存疑”分类期望率(通常称为拒绝率)的关系图会很有帮助。
误差率 pmc 是对未来随机选择样本做出明确错误分类(包括异常值)的概率,拒绝率 pd 是宣布存疑的概率。我们主要关注 pmc,但相关论述同样适用于 pd,并且关于误差率的陈述也可直接应用于其他损失的平均成本。
2.2 误差率估计
- 测试集法 :评估误差率最简
超级会员免费看
订阅专栏 解锁全文
5634

被折叠的 条评论
为什么被折叠?



