7、统计决策理论中的性能评估与误差率估计

统计决策理论中的性能评估与误差率估计

1. 回归神经网络的平均思想

在回归神经网络中,简单平均和加权平均的思想被多次提出。有众多文献提及相关内容,如 Baxt(1992)、Benediktsson & Swain(1992)等。LeBlanc & Tibshirani(1993)不仅延续了这一思路,还考虑了通过自助法进行估计。同时,交叉验证和自助法都可视为校正训练集偏差(或其他度量)的方法,它们的使用方式与处理明显误差的方式相同。

Wolpert 的思想更为通用,我们可以在特征空间局部使用其方法,并允许权重随 x 缓慢变化。在他的通用方案中,将所有“0 级”模型(在留一法交叉验证下)的输出和真实响应作为“1 级”程序的输入,进而做出最终决策。堆叠泛化涵盖了各种组合模型输出的方法,这些方法可能会随 x 变化。Jacobs 等人(1991)采用了类似方法,他们同时训练所有分类器,且 0 级分类器无需在整个输入空间都表现良好。

2. 性能评估

2.1 性能的定义

性能评估首先需要明确性能的定义。基于总风险(期望损失)确定的贝叶斯规则,可作为性能评估的合适基础。当使用特定损失函数时,绘制误分类期望率与“存疑”分类期望率(通常称为拒绝率)的关系图会很有帮助。

误差率 pmc 是对未来随机选择样本做出明确错误分类(包括异常值)的概率,拒绝率 pd 是宣布存疑的概率。我们主要关注 pmc,但相关论述同样适用于 pd,并且关于误差率的陈述也可直接应用于其他损失的平均成本。

2.2 误差率估计

  • 测试集法 :评估误差率最简
内容概要:本文为《科技类企业品牌传播白皮书》,系统阐述了新闻媒体发稿、自媒体博主种草短视频矩阵覆盖三大核心传播策略,并结合“传声港”平台的AI工具资源整合能力,提出适配科技企业的品牌传播解决方案。文章深入分析科技企业传播的特殊性,包括受众圈层化、技术复杂性传播通俗性的矛盾、产品生命周期影响及2024-2025年传播新趋势,强调从“技术输出”向“价值引领”的战略升级。针对三种传播方式,分别从适用场景、操作流程、效果评估、成本效益、风险防控等方面提供详尽指南,并通过平台AI能力实现资源智能匹配、内容精准投放全链路效果追踪,最终构建“信任—种草—曝光”三位一体的传播闭环。; 适合人群:科技类企业品牌市场负责人、公关传播从业者、数字营销管理者及初创科技公司创始人;具备一定品牌传播基础,关注效果可量化AI工具赋能的专业人士。; 使用场景及目标:①制定科技产品全生命周期的品牌传播策略;②优化媒体发稿、KOL合作短视频运营的资源配置ROI;③借助AI平台实现传播内容的精准触达、效果监测风险控制;④提升品牌在技术可信度、用户信任市场影响力方面的综合竞争力。; 阅读建议:建议结合传声港平台的实际工具模块(如AI选媒、达人匹配、数据驾驶舱)进行对照阅读,重点关注各阶段的标准化流程数据指标基准,将理论策略平台实操深度融合,推动品牌传播从经验驱动转向数据工具双驱动。
【3D应力敏感度分析拓扑优化】【基于p-范数全局应力衡量的3D敏感度分析】基于伴随方法的有限元分析和p-范数应力敏感度分析(Matlab代码实现)内容概要:本文档围绕“基于p-范数全局应力衡量的3D应力敏感度分析”展开,介绍了一种结合伴随方法有限元分析的拓扑优化技术,重点实现了3D结构在应力约束下的敏感度分析。文中详细阐述了p-范数应力聚合方法的理论基础及其在避免局部应力过高的优势,并通过Matlab代码实现完整的数值仿真流程,涵盖有限元建模、灵敏度计算、优化迭代等关键环节,适用于复杂三维结构的轻量化高强度设计。; 适合人群:具备有限元分析基础、拓扑优化背景及Matlab编程能力的研究生、科研人员或从事结构设计的工程技术人员,尤其适合致力于力学仿真优化算法开发的专业人士; 使用场景及目标:①应用于航空航天、机械制造、土木工程等领域中对结构强度和重量有高要求的设计优化;②帮助读者深入理解伴随法在应力约束优化中的应用,掌握p-范数法处理全局应力约束的技术细节;③为科研复现、论文写作及工程项目提供可运行的Matlab代码参考算法验证平台; 阅读建议:建议读者结合文中提到的优化算法原理Matlab代码同步调试,重点关注敏感度推导有限元实现的衔接部分,同时推荐使用提供的网盘资源获取完整代码测试案例,以提升学习效率实践效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值