Ng深度学习笔记2 -逻辑回归、分类问题、牛顿迭代

Hypothesis

线性模型并不能很好地用于分类问题,分类问题的结果多是离散且非线性的,这时需要构造新的模型函数,如下面这样的复合函数。

hθ(x)=g(θTx)g(z)=11+ezhθ(x)=11+eθTx

通常将 g(z) 叫做 sigmoid function(S型函数)或logistic function(逻辑函数)。复合以后,可以将原先的线性模型映射成S型,更好地服务于分类问题,其结果区间在 [0,1] 。我们把这类问题成为逻辑回归问题。

例子

用上述模型来描述肿瘤大小和良性/恶性的相关问题最为合适。 [0,1] 代表了该肿瘤是否为良性/恶性的概率。如下式为特定 x θ下恶性肿瘤( y=1 )的概率:

hθ(x)=P(y=1|x;θ)

则此时为良性肿瘤的概率为:
P(y=0|x;θ)=1hθ(x)

Cost Function

定义了逻辑回归函数,如果依法炮制最小二乘法来求 θ 值时并不理想,因为此时的 J(θ) 并非是凸函数,有很多的局部最小值,用梯度下降要找到全局最小是不现实的。

J(θ)=1mimcost(hθ(xi),yi)

可以引入 log(z) hθ 转换成需要的成本函数。
cost(hθ(xi),yi)={log(hθ(x))log(1hθ(x))if y=1if y=0

如图,
Logistic regression, cost function
可看出, y=1 时,如果 hθ(x) 趋近于0, J(θ) 将趋近于无穷。

Vectorized Implementation

为了方便运算,更新参数的表达式需要改写为向量形式。我们的训练数据为 (x,y) ,即 (xi,yi),i=0,...,m 。如上定义的成本函数有个好的特性,就是求偏导的表达式和线性回归中的表达式形式一样。

θ=θαθJ(θ)=θαmim((h(xi)yi)xi)

Newton Iteration

牛顿迭代法是一种更快的收敛方法。给定我们的成本函数,我们的目标是找到 J(θ)=0 的参数值 θ 。令 f(x)=θJ(θ) ,牛顿法为

θ=θf(θ)f(θ)=θJ(θ)J′′(θ)

该法的向量形式可表述为,
θ=θH1θJ

此处 H 为Hessian阵(二阶偏导), θJ 为一阶偏导向量。
H=H0,0H1,0Hn,0H0,1H1,1Hn,1H0,nH1,nHn,n

其中,
Hi,j=2Jθiθj

θJ=J(θ)θ0J(θ)θ1J(θ)θn

  1. https://en.wikipedia.org/wiki/Maximum_likelihood_estimation
  2. http://openclassroom.stanford.edu/MainFolder/CoursePage.php?course=DeepLearning
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值