深度学习最全优化方法总结比较(SGD,Adagrad,Adadelta,Adam,Adamax,Nadam)

项目github地址:bitcarmanlee easy-algorithm-interview-and-practice
欢迎大家star,留言,一起学习进步

本文仅对一些常见的优化方法进行直观介绍和简单的比较,各种优化方法的详细内容及公式只好去认真啃论文了,在此我就不赘述了。

1.SGD

此处的SGD指mini-batch gradient descent,关于batch gradient descent, stochastic gradient descent, 以及 mini-batch gradient descent的具体区别就不细说了。现在的SGD一般都指mini-batch gradient descent。

SGD就是每一次迭代计算mini-batch的梯度,然后对参数进行更新,是最常见的优化方法了。即

g t = ∇ θ t − 1 f ( θ t − 1 ) g_t=\nabla_{\theta_{t-1}}{f(\theta_{t-1})} gt=θt1f(θt1)
Δ θ t = − η ∗ g t \Delta{\theta_t}=-\eta*g_t Δθt=ηgt

其中,η是学习率,gt是梯度

SGD完全依赖于当前batch的梯度,所以η可理解为允许当前batch的梯度多大程度影响参数更新

缺点:(正因为有这些缺点才让这么多大神发展出了后续的各种算法)

1.选择合适的learning rate比较困难
2.对所有的参数更新使用同样的learning rate。对于稀疏数据或者特征,有时我们可能想更新快一些对于不经常出现的特征,对于常出现的特征更新慢一些,这时候SGD就不太能满足要求了
3/SGD容易收敛到局部最优,在某些情况下可能被困在鞍点【但是在合适的初始化和学习率设置下,鞍点的影响其实没这么大】

2.Momentum

momentum是模拟物理里动量的概念,积累之前的动量来替代真正的梯度。公式如下:

m t = μ ∗ m t − 1 + g t m_t=\mu*m_{t-1}+g_t mt=μmt1+gt
Δ θ t = − η ∗ m t \Delta{\theta_t}=-\eta*m_t Δθt=ηmt

其中,μ是动量因子
特点:

1.下降初期时,使用上一次参数更新,下降方向一致,乘上较大的μ能够进行很好的加速
2.下降中后期时,在局部最小值来回震荡的时候,gradient→0,μ使得更新幅度增大,跳出陷阱
3.在梯度改变方向的时候,μ能够减少更新

总而言之,momentum项能够在相关方向加速SGD,抑制振荡,从而加快收敛

3.Nesterov

nesterov项在梯度更新时做一个校正,避免前进太快,同时提高灵敏度。
将上一节中的公式展开可得:
Δ θ t = − η ∗ μ ∗ m t − 1 − η ∗ g t \Delta{\theta_t}=-\eta*\mu*m_{t-1}-\eta*g_t Δθt=ημmt1ηgt

可以看出, m t − 1 m_{t-1} mt1并没有直接改变当前梯度 g t g_t gt,所以Nesterov的改进就是让之前的动量直接影响当前的动量。即:
g t = ∇ θ t − 1 f ( θ t − 1 − η ∗ μ ∗ m t − 1 ) g_t=\nabla_{\theta_{t-1}}{f(\theta_{t-1}-\eta*\mu*m_{t-1})} gt=θt1f(θt1ημmt1)
m t = μ ∗ m t − 1 + g t m_t=\mu*m_{t-1}+g_t mt=μmt1+gt
Δ θ t = − η ∗ m t \Delta{\theta_t}=-\eta*m_t Δθt=ηmt

所以,加上nesterov项后,梯度在大的跳跃后,进行计算对当前梯度进行校正。如下图:
这里写图片描述
momentum首先计算一个梯度(短的蓝色向量),然后在加速更新梯度的方向进行一个大的跳跃(长的蓝色向量),nesterov项首先在之前加速的梯度方向进行一个大的跳跃(棕色向量),计算梯度然后进行校正(绿色梯向量)

其实,momentum项和nesterov项都是为了使梯度更新更加灵活,对不同情况有针对性。但是,人工设置一些学习率总还是有些生硬,接下来介绍几种自适应学习率的方法.

4.Adagrad

Adagrad其实是对学习率进行了一个约束。即:
n t = n t − 1 + g t 2 n_t=n_{t-1}+g_t^2 nt=nt1+gt2
Δ θ t = − η n t + ϵ ∗ g t \Delta{\theta_t}=-\frac{\eta}{\sqrt{n_t+\epsilon}}*g_t Δθt=nt+ϵ ηgt
此处,对 g t g_t gt从1到t进行一个递推形成一个约束项regularizer, − 1 ∑ r = 1 t ( g r ) 2 + ϵ -\frac{1}{\sqrt{\sum_{r=1}^t(g_r)^2+\epsilon}} r=1t(gr)2+ϵ 1,ϵ用来保证分母非0.

特点:

1.前期 g t g_t gt较小的时候, regularizer较大,能够放大梯度
2.后期 g t g_t gt较大的时候,regularizer较小,能够约束梯度
3.适合处理稀疏梯度
缺点:

1.由公式可以看出,仍依赖于人工设置一个全局学习率
2.η设置过大的话,会使regularizer过于敏感,对梯度的调节太大
3.中后期,分母上梯度平方的累加将会越来越大,使gradient→0,使得训练提前结束

5.Adadelta

Adadelta是对Adagrad的扩展,最初方案依然是对学习率进行自适应约束,但是进行了计算上的简化。
Adagrad会累加之前所有的梯度平方,而Adadelta只累加固定大小的项,并且也不直接存储这些项,仅仅是近似计算对应的平均值。即:
n t = ν ∗ n t − 1 + ( 1 − ν ) ∗ g t 2 n_t=\nu*n_{t-1}+(1-\nu)*g_t^2 nt=νnt1+(1ν)gt2
Δ θ t = − η n t + ϵ ∗ g t \Delta{\theta_t} = -\frac{\eta}{\sqrt{n_t+\epsilon}}*g_t Δθt=nt+ϵ ηgt
在此处Adadelta其实还是依赖于全局学习率的,但是作者做了一定处理,经过近似牛顿迭代法之后:
E ∣ g 2 ∣ t = ρ ∗ E ∣ g 2 ∣ t − 1 + ( 1 − ρ ) ∗ g t 2 E|g^2|_t=\rho*E|g^2|_{t-1}+(1-\rho)*g_t^2 Eg2t=ρEg2t1+(1ρ)gt2

其中,E代表求期望。
此时,可以看出Adadelta已经不用依赖于全局学习率了。
特点:

1.训练初中期,加速效果不错,很快
2.训练后期,反复在局部最小值附近抖动

6.RMSprop

RMSprop可以算作Adadelta的一个特例:
当ρ=0.5时, E ∣ g 2 ∣ t = ρ ∗ E ∣ g 2 ∣ t − 1 + ( 1 − ρ ) ∗ g t 2 E|g^2|_t=\rho*E|g^2|_{t-1}+(1-\rho)*g_t^2 Eg2t=ρEg2t1+(1ρ)gt2就变为了求梯度平方和的平均数。

如果再求根的话,就变成了RMS(均方根):
R M S ∣ g ∣ t = E ∣ g 2 ∣ t + ϵ RMS|g|_t=\sqrt{E|g^2|_t+\epsilon} RMSgt=Eg2t+ϵ

此时,这个RMS就可以作为学习率η的一个约束:
Δ x t = − η R M S ∣ g ∣ t ∗ g t \Delta{x_t}=-\frac{\eta}{RMS|g|_t}*g_t Δxt=RMSgtηgt

特点:

1.其实RMSprop依然依赖于全局学习率
2.RMSprop算是Adagrad的一种发展,和Adadelta的变体,效果趋于二者之间
3.适合处理非平稳目标
4.对于RNN效果很好

7.Adam

Adam(Adaptive Moment Estimation)本质上是带有动量项的RMSprop,它利用梯度的一阶矩估计和二阶矩估计动态调整每个参数的学习率。Adam的优点主要在于经过偏置校正后,每一次迭代学习率都有个确定范围,使得参数比较平稳。公式如下:

m t = μ ∗ m t − 1 + ( 1 − μ ) ∗ g t m_t=\mu*m_{t-1}+(1-\mu)*g_t mt=μmt1+(1μ)gt
n t = ν ∗ n t − 1 + ( 1 − ν ) ∗ g t 2 n_t=\nu*n_{t-1}+(1-\nu)*g_t^2 nt=νnt1+1νgt2
m t ^ = m t 1 − μ t \hat{m_t}=\frac{m_t}{1-\mu^t} mt^=1μtmt
n t ^ = n t 1 − ν t \hat{n_t}=\frac{n_t}{1-\nu^t} nt^=1νtnt
Δ θ t = − m t ^ n t ^ + ϵ ∗ η \Delta{\theta_t}=-\frac{\hat{m_t}}{\sqrt{\hat{n_t}}+\epsilon}*\eta Δθt=nt^ +ϵmt^η

其中, m t m_t mt n t n_t nt分别是对梯度的一阶矩估计和二阶矩估计,可以看作对期望 E ∣ g t ∣ E|g_t| Egt E ∣ g t 2 ∣ E|g_t^2| Egt2的估计; n t ^ \hat{n_t} nt^是对 m t m_t mt n t n_t nt的校正,这样可以近似为对期望的无偏估计。

可以看出,直接对梯度的矩估计对内存没有额外的要求,而且可以根据梯度进行动态调整,而 − m t ^ n t ^ + ϵ -\frac{\hat{m_t}}{\sqrt{\hat{n_t}}+\epsilon} nt^ +ϵmt^对学习率形成一个动态约束,而且有明确的范围。
特点:

1.结合了Adagrad善于处理稀疏梯度和RMSprop善于处理非平稳目标的优点
2.对内存需求较小
3.为不同的参数计算不同的自适应学习率
4.也适用于大多非凸优化
5.适用于大数据集和高维空间

8.Adamax

Adamax是Adam的一种变体,此方法对学习率的上限提供了一个更简单的范围。公式上的变化如下:
n t = m a x ( ν ∗ n t − 1 , ∣ g t ∣ ) n_t=max(\nu*n_{t-1},|g_t|) nt=max(νnt1,gt)
Δ x = − m t ^ n t + ϵ ∗ η \Delta{x}=-\frac{\hat{m_t}}{n_t+\epsilon}*\eta Δx=nt+ϵmt^η
可以看出,Adamax学习率的边界范围更简单

9.Nadam

Nadam类似于带有Nesterov动量项的Adam。公式如下:
g t ^ = g t 1 − Π i = 1 t μ i \hat{g_t}=\frac{g_t}{1-\Pi_{i=1}^t\mu_i} gt^=1Πi=1tμigt
m t = μ t ∗ m t − 1 + ( 1 − μ t ) ∗ g t m_t=\mu_t*m_{t-1}+(1-\mu_t)*g_t mt=μtmt1+(1μt)gt
m t ^ = m t 1 − Π i = 1 t + 1 μ i \hat{m_t}=\frac{m_t}{1-\Pi_{i=1}^{t+1}\mu_i} mt^=1Πi=1t+1μimt
n t = ν ∗ n t − 1 + ( 1 − ν ) ∗ g t 2 n_t=\nu*n_{t-1}+(1-\nu)*g_t^2 nt=νnt1+1νgt2
n t ^ = n t 1 − ν t \hat{n_t}=\frac{n_t}{1-\nu^t} nt^=1νtnt
m t ˉ = ( 1 − μ t ) ∗ g t ^ + μ t + 1 ∗ m t ^ \bar{m_t}=(1-\mu_t)*\hat{g_t}+\mu_{t+1}*\hat{m_t} mtˉ=(1μt)gt^+μt+1mt^
Δ θ t = − η ∗ m t ˉ n t ^ + ϵ \Delta{\theta_t}=-\eta*\frac{\bar{m_t}}{\sqrt{\hat{n_t}}+\epsilon} Δθt=ηnt^ +ϵmtˉ
可以看出,Nadam对学习率有了更强的约束,同时对梯度的更新也有更直接的影响。一般而言,在想使用带动量的RMSprop,或者Adam的地方,大多可以使用Nadam取得更好的效果。

10.经验之谈

1.对于稀疏数据,尽量使用学习率可自适应的优化方法,不用手动调节,而且最好采用默认值
2.SGD通常训练时间更长,容易陷入鞍点,但是在好的初始化和学习率调度方案的情况下,结果更可靠
3.如果在意更快的收敛,并且需要训练较深较复杂的网络时,推荐使用学习率自适应的优化方法。
4.Adadelta,RMSprop,Adam是比较相近的算法,在相似的情况下表现差不多。
5.在想使用带动量的RMSprop,或者Adam的地方,大多可以使用Nadam取得更好的效果

最后展示两张可厉害的图,一切尽在图中啊,上面的都没啥用了… …

损失平面等高线
损失平面等高线

在鞍点处的比较
在鞍点处的比较

  • 2
    点赞
  • 9
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值