线性规划的影子价格(shadow price)|对偶价格(dual price) 与 gurobi 实现

本文介绍了线性规划中的对偶解,重点讨论了影子价格(也称对偶价格)的概念。通过Gurobi库展示了如何在Python中求解线性规划问题并获取对偶价格。示例中创建了一个优化模型,并打印了变量的最优值和约束的对偶价格,帮助读者理解这些数值在实际问题中的意义。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在列生成的问题中,大量用到 dual price, 有一些文章会翻译为影子价格,有一些则是对偶价格,叫知乎有一个写得比较好的文章
什么是影子价格?—— 线性规划的对偶解,及拉格朗日乘数

模型为:
在这里插入图片描述

下面是 gurobi 的实现, gurobi 像现在可以直接 pip 安装,有一个非商业的 license
pip install gurobipy

from gurobipy import *

# Create a new model
m = Model("test1")

# Create variables
x1 = m.addVar(name="x1")
x2 = m.addVar(name="x2")
# Set objective
m.setObjective(50 * x1 + 100*x2, GRB.MAXIMIZE)


m.addConstr(x1 + x2 <= 300, "c0")
m.addConstr(2 * x1 + x2 <= 400, "c1")
m.addConstr(x2 <= 250, "c2")
m.optimize()

dualArray = []
c = m.getConstrs()
for v in m.getVars():
    print('%s = %g' % (v.varName, v.x))

for i in range(m.getAttr(GRB.Attr.NumConstrs)):
    dualArray.append(c[i].getAttr(GRB.Attr.Pi))

print('Obj: %g' % m.objVal)
print('dual price:', dualArray)

输出

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值