原文视频:https://www.bilibili.com/video/BV194411y7sA?p=27&spm_id_from=pageDriver
对偶问题(数学模型)中的经济意义
最优目标为最大值(利润最大)
例1、(杜刚教授)某工厂可生产甲、乙两种产品,消耗 煤、电、油三种资源,相关数据如下,求总收入最大的生产计划方案 P问题(原问题)
甲 | 乙 | 资源限制 | |
煤 | 9 | 4 | 360 |
电 | 4 | 5 | 200 |
油 | 3 | 10 | 300 |
单位产品价格 | 7 | 12 |
(1)对偶问题最优解的经济意义(影子价格)
其他方法:
(上一节,性质六:原问题终表的松弛变量检验数的负值,就是对偶问题的最优解)
本方法:
资源的影子价格 : 数学上的表示 (对偶问题的最优解)(在原问题的终表上,能够直接看出)
(1) (shadow price) :买主的最低出价
(2) 原问题的影子价格: 当对应资源的限制(其他资源不变),每增加一个单位时,引起的卖方总收入的增加(卖家的内控价格)
注:
(1)影子价格反映资源对目标函数的边际贡献,即资源转换成经济效率的效率
(2)影子价格反映了资源的稀缺程度
影子价格 = 0 表示资源 有剩余
影子价格 > 0 表示资源 用尽了,且越大的数,代表价值转换率越高,更应该关注
(3)反映了资源的边际使用价值