ML学习--随记

  • 备注:随着学习的前进再进行条理化的整理。
  1. 损失函数变化剧烈的原因:
    (1) 学习率选的太大;
    (2)batch_size太小;
  2. 尽量保证训练数据的分布与测试数据的分布一致。
  3. tensorflow重要库函数:
    (1) tf.layers,现在常用的;
    (2) tf.contrib.layers.fully_connected(),以后可能会被废弃;
    (3) slim,1.8版本之后被放弃;
  4. 衡量两个分布之间的差异使用交叉熵。
  5. 熵的计算公式: − ∫ − ∞ + ∞ P l o g P   d x -\int_{-\infty}^{+\infty}PlogP\ dx +PlogP dx,以2为底,单位为bit,表示信源所有可能发生情况的平均不确定性。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值