- 备注:随着学习的前进再进行条理化的整理。
- 损失函数变化剧烈的原因:
(1) 学习率选的太大;
(2)batch_size太小; - 尽量保证训练数据的分布与测试数据的分布一致。
- tensorflow重要库函数:
(1) tf.layers,现在常用的;
(2) tf.contrib.layers.fully_connected(),以后可能会被废弃;
(3) slim,1.8版本之后被放弃; - 衡量两个分布之间的差异使用交叉熵。
- 熵的计算公式: − ∫ − ∞ + ∞ P l o g P d x -\int_{-\infty}^{+\infty}PlogP\ dx −∫−∞+∞PlogP dx,以2为底,单位为bit,表示信源所有可能发生情况的平均不确定性。