给定一类气体分子为
a
a
a,另一类气体分子为
b
b
b,两者之间的平均自由程定义为:一个粒子
a
a
a经过一群分子
b
b
b时发生碰撞所经过的平均距离,表示为:
λ
a
b
=
1
σ
a
b
n
b
\lambda_{ab}=\frac{1}{\sigma_{ab} n_b}
λab=σabnb1
上式中
σ
a
b
\sigma_{ab}
σab为粒子
a
a
a与
b
b
b作用的截面(cross section of interaction),因此这里包括了 弹性碰撞、电离、吸附等不同作用过程的截面。
n
b
n_b
nb为粒子
b
b
b的数密度[
1
/
m
3
1/m^3
1/m3](number density),可以根据理想气态方程
p
=
n
k
B
T
p=nk_BT
p=nkBT
得出
n
=
p
k
B
T
n=\frac{p}{k_B T}
n=kBTp,其中
k
B
k_B
kB为玻尔兹曼常数,
k
B
=
1.38
×
1
0
−
23
J
/
K
k_B=1.38\times 10^{-23}J/K
kB=1.38×10−23J/K
以速度
v
a
v_a
va运动的粒子
a
a
a 将与静止的一组
b
b
b型粒子碰撞的频率
ν
\nu
ν为:
ν
a
b
=
v
a
λ
a
b
=
v
a
σ
a
b
n
b
\nu_{ab}=\frac{v_{a}}{\lambda_{ab}}=v_a\sigma_{ab}n_b
νab=λabva=vaσabnb
如果粒子
a
a
a的浓度为
n
a
n_a
na,则反应速率(rate of reaction)R为:
R
=
n
a
∗
ν
a
b
=
n
a
n
b
σ
a
b
v
a
(
c
m
3
⋅
s
e
c
)
−
1
R=n_a*\nu_{ab}=n_a n_b \sigma_{ab} v_a (cm^3 \cdot sec)^{-1}
R=na∗νab=nanbσabva(cm3⋅sec)−1