【等离子体】平均自由程和反应速率

给定一类气体分子为 a a a,另一类气体分子为 b b b,两者之间的平均自由程定义为:一个粒子 a a a经过一群分子 b b b时发生碰撞所经过的平均距离,表示为:
λ a b = 1 σ a b n b \lambda_{ab}=\frac{1}{\sigma_{ab} n_b} λab=σabnb1
上式中 σ a b \sigma_{ab} σab为粒子 a a a b b b作用的截面(cross section of interaction),因此这里包括了 弹性碰撞、电离、吸附等不同作用过程的截面。 n b n_b nb为粒子 b b b的数密度[ 1 / m 3 1/m^3 1/m3](number density),可以根据理想气态方程
p = n k B T p=nk_BT p=nkBT
得出 n = p k B T n=\frac{p}{k_B T} n=kBTp,其中 k B k_B kB为玻尔兹曼常数, k B = 1.38 × 1 0 − 23 J / K k_B=1.38\times 10^{-23}J/K kB=1.38×1023J/K

以速度 v a v_a va运动的粒子 a a a 将与静止的一组 b b b型粒子碰撞的频率 ν \nu ν为:
ν a b = v a λ a b = v a σ a b n b \nu_{ab}=\frac{v_{a}}{\lambda_{ab}}=v_a\sigma_{ab}n_b νab=λabva=vaσabnb
如果粒子 a a a的浓度为 n a n_a na,则反应速率(rate of reaction)R为:
R = n a ∗ ν a b = n a n b σ a b v a ( c m 3 ⋅ s e c ) − 1 R=n_a*\nu_{ab}=n_a n_b \sigma_{ab} v_a (cm^3 \cdot sec)^{-1} R=naνab=nanbσabva(cm3sec)1

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值