SemEval 的发展:
SemEval 数据集完成基本任务是推特的情感分析(Sentiment Analysis in Twitter)。对于推特的文本情感分析基于SemEval 数据集始于2013年,之后任务和数据都在不断发展为更复杂。在13年到15年,任务是简单给一个推特文本,然后进行文本情感分类,分为3类(积极、消极、中立),称为任务A;
于2015年,在任务和任务中引入了Topic的概念,任务升级为给一个推特,并给一个topic;推断推特内容关于这个topic的情感倾向,积极或消极(任务B);
于2016年,引入了两个分支,一是加入了tweet quantification,也就是推特的量化分析;二是five-point ordinal classification
,也就是之前是推特的三分类,16年拓展为五分类(STRONGLYPOSITIVE,