SemEval 情感分析主流数据集以及任务介绍

SemEval 的发展:

SemEval 数据集完成基本任务是推特的情感分析(Sentiment Analysis in Twitter)。对于推特的文本情感分析基于SemEval 数据集始于2013年,之后任务和数据都在不断发展为更复杂。在13年到15年,任务是简单给一个推特文本,然后进行文本情感分类,分为3类(积极、消极、中立),称为任务A;

于2015年,在任务和任务中引入了Topic的概念,任务升级为给一个推特,并给一个topic;推断推特内容关于这个topic的情感倾向,积极或消极(任务B);

于2016年,引入了两个分支,一是加入了tweet quantification,也就是推特的量化分析;二是five-point ordinal classification
,也就是之前是推特的三分类,16年拓展为五分类STRONGLYPOSITIVE,

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值