21、文本词频中的语义挖掘:降维与潜在语义分析

文本词频中的语义挖掘:降维与潜在语义分析

在自然语言处理(NLP)领域,处理高维数据是一项常见且具有挑战性的任务。为了更有效地分析文本数据,我们常常需要对数据进行降维处理,以减少数据的复杂性,同时保留数据的关键信息。本文将介绍奇异值分解(SVD)和潜在语义分析(LSA)这两种重要的降维技术,并通过代码示例展示它们在实际应用中的效果。

1. 奇异值分解(SVD)

主成分分析(PCA)的核心是一种名为奇异值分解(SVD)的数学过程。SVD 是一种将任意矩阵分解为三个因子的算法,这三个矩阵相乘可以重新得到原始矩阵。这类似于为一个大整数找到恰好三个整数因子,但这里的因子不是标量整数,而是具有特殊性质的二维实矩阵。

假设我们有一个由 m 个 n 维点组成的数据集,用矩阵 W 表示。在完整版本中,W 的 SVD 数学表示如下(假设 m > n):

矩阵 U、S 和 V 具有特殊性质。U 和 V 矩阵是正交的,这意味着如果将它们与其转置版本相乘,将得到一个单位矩阵。而 S 是对角矩阵,即只有对角线上有非零值。

需要注意的是,公式中的等号表示,如果将 U、S 和 V 相乘,将精确地得到原始的 TF - IDF 向量矩阵 W,其中每行对应一个文档。

然而,这些矩阵的最小维度仍然是 n,我们希望减少维度。因此,在实际应用中,我们通常使用 SVD 的简化或截断版本,即只关注我们感兴趣的前 p 个维度。

截断 SVD 的数学表示如下:

在这个公式中,m 和 n 是原始矩阵的行数和列数,而 p 是我们想要保留的维度数。例如,在马的示例中,如果我们想在二维空间中显示马的点云,p 将等于 2。对于 p =

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值