[参文]GCN+交通

一、流量预测

1.1 Spatio-Temporal Graph Convolutional Networks: A Deep Learning Framework for Traffic Forecasting

俗称:STGCN
文章解析,很优秀啊!
代码解读,指路

  • 摘要
    及时准确的交通预测对于城市交通控制和引导至关重要。由于交通流的高度非线性和复杂性,传统方法不能满足中长期预测任务的要求,往往忽略了空间和时间依赖性。在本文中,我们提出了一种新的深度学习框架,时空图卷积网络(STGCN),以解决交通领域的时间序列预测问题。我们不使用正则卷积和递归单元,而是在图上描述问题,并建立具有完整卷积结构的模型,这使得训练速度更快,参数更少。实验表明,我们的模型STGCN通过对多尺度交通网络进行建模,有效地捕获了全面的时空相关性,并且在各种真实世界的交通数据集上始终优于最先进的基线。

  • abstract
    Timely accurate traffic forecast is crucial for urban traffic control and guidance. Due to the high nonlinearity and complexity of traffic flow, traditional methods cannot satisfy the requirements of mid-and-long term prediction tasks and often neglect spatial and temporal dependencies. In this paper, we propose a novel deep learning framework, Spatio-Temporal Graph Convolutional Networks (STGCN), to tackle the time series prediction problem in traffic domain. Instead of applying regular convolutional and recurrent units, we formulate the problem on graphs and build the model with complete convolutional structures, which enable much faster training speed with fewer parameters. Experiments show that our model STGCN effectively captures comprehensive spatio-temporal correlations through modeling multi-scale traffic networks and consistently outperforms state-of-the-art baselines on various real-world traffic datasets.

  • 图片要点
    在这里插入图片描述

  • bib

@article{2017Spatio,
  title={Spatio-Temporal Graph Convolutional Networks: A Deep Learning Framework for Traffic Forecasting},
  author={ Yu, Bing  and  Yin, Haoteng  and  Zhu, Zhanxing },
  year={2017},
}

1.2 Graph WaveNet for Deep Spatial-Temporal Graph Modeling

文章解析,优秀啊
ACM文章

  • 摘要
    时空图建模是分析系统中组件的空间关系和时间趋势的一项重要任务。现有的方法大多捕捉固定图形结构上的空间依赖性,假设实体之间的潜在关系是预先确定的。然而,显式图结构(关系)不一定反映真实的依赖关系,并且由于数据中的不完整连接,可能会丢失真实的关系。此外,现有的方法对于捕捉时间趋势是无效的,因为这些方法中使用的RNN或CNN不能捕捉长程时间序列。为了克服这些局限性,本文提出了一种新的用于时空图建模的图神经网络结构graph WaveNet。通过开发一种新的自适应依赖矩阵并通过节点嵌入进行学习,我们的模型可以精确地捕获数据中隐藏的空间依赖。Graph WaveNet具有一个堆叠的扩展一维卷积组件,其感受野随着层数的增加呈指数增长,能够处理非常长的序列。这两个组件在一个统一的框架中无缝集成,整个框架以端到端的方式学习。在两个公共交通网络数据集METR-LA和PEMS-BAY上的实验结果证明了我们算法的优越性。

  • ABSTRACT
    Spatial-temporal graph modeling is an important task to analyze the spatial relations and temporal trends of components in a system. Existing approaches mostly capture the spatial dependency on a fixed graph structure, assuming that the underlying relation between entities is pre-determined. However, the explicit graph structure (relation) does not necessarily reflect the true dependency and genuine relation may be missing due to the incomplete connections in the data. Furthermore, existing methods are ineffective to capture the temporal trends as the RNNs or CNNs employed in these methods cannot capture long-range temporal sequences. To overcome these limitations, we propose in this paper a novel graph neural network architecture, Graph WaveNet, for spatial-temporal graph modeling. By developing a novel adaptive dependency matrix and learn it through node embedding, our model can precisely capture the hidden spatial dependency in the data. With a stacked dilated 1D convolution component whose receptive field grows exponentially as the number of layers increases, Graph WaveNet is able to handle very long sequences. These two components are integrated seamlessly in a unified framework and the whole framework is learned in an end-to-end manner. Experimental results on two public traffic network datasets, METR-LA and PEMS-BAY, demonstrate the superior performance of our algorithm.

  • 衍化过程
    在这里插入图片描述

  • model图片
    在这里插入图片描述

  • bib

@article{2019Graph,
  title={Graph WaveNet for Deep Spatial-Temporal Graph Modeling},
  author={ Wu, Zonghan  and  Pan, Shirui  and  Long, Guodong  and  Jiang, Jing  and  Zhang, Chengqi },
  year={2019},
}

1.3 T-GCN: A Temporal Graph Convolutional Network for Traffic Prediction

文章解析,优秀啊
IEEE文章

  • 摘要:
    准确、实时的交通预测在智能交通系统中发挥着重要作用,对城市交通规划、交通管理和交通控制具有重要意义。然而,由于城市道路网络拓扑结构的约束和时间的动态变化规律,交通预测一直被认为是一个开放的科学问题。为了同时捕捉空间和时间的依赖关系,我们提出了一种新的基于神经网络的流量预测方法,即时态图卷积网络(T-GCN)模型,该模型与图卷积网络(GCN)和选通递归单元(GRU)相结合。具体来说,GCN用于学习复杂的拓扑结构以获取空间相关性,而选通递归单元用于学习交通数据的动态变化以获取时间相关性。然后,将T-GCN模型应用于基于城市道路网的交通预测。实验表明,我们的T-GCN模型可以从交通数据中获得时空相关性,并且预测性能优于现实世界交通数据集上的最新基线。T-GCN的tensorflow实现可在https://www.github.com/lehaifeng/T-GCN

  • Abstract:
    Accurate and real-time traffic forecasting plays an important role in the intelligent traffic system and is of great significance for urban traffic planning, traffic management, and traffic control. However, traffic forecasting has always been considered an “open” scientific issue, owing to the constraints of urban road network topological structure and the law of dynamic change with time. To capture the spatial and temporal dependences simultaneously, we propose a novel neural network-based traffic forecasting method, the temporal graph convolutional network (T-GCN) model, which is combined with the graph convolutional network (GCN) and the gated recurrent unit (GRU). Specifically, the GCN is used to learn complex topological structures for capturing spatial dependence and the gated recurrent unit is used to learn dynamic changes of traffic data for capturing temporal dependence. Then, the T-GCN model is employed to traffic forecasting based on the urban road network. Experiments demonstrate that our T-GCN model can obtain the spatio-temporal correlation from traffic data and the predictions outperform state-of-art baselines on real-world traffic datasets. Our tensorflow implementation of the T-GCN is available at https://www.github.com/lehaifeng/T-GCN

  • model图片
    在这里插入图片描述

  • bib

@article{2019T,
  title={T-GCN: A Temporal Graph Convolutional Network for Traffic Prediction},
  author={ Zhao, L.  and  Song, Y.  and  Zhang, C.  and  Liu, Y.  and  Li, H. },
  journal={IEEE Transactions on Intelligent Transportation Systems},
  volume={PP},
  number={99},
  pages={1-11},
  year={2019},
}

1.4 Spatial-Temporal Synchronous Graph Convolutional Networks: A New Framework for Spatial-Temporal Network Data Forecasting

俗称:STSGCN
原文翻译

  • 摘要
    时空网络数据预测在交通管理和城市规划的大量应用中具有重要意义。然而,潜在的复杂时空相关性和异质性使这个问题具有挑战性。现有的方法通常使用单独的组件来捕获空间和时间相关性,而忽略了时空数据中的异质性。在本文中,我们提出了一种新的时空同步图卷积网络(STSGCN)模型,用于时空网络数据预测。该模型通过精心设计的时空同步建模机制,能够有效地捕捉复杂的局部时空相关性。同时,该模型针对不同的时间段设计了多个模块,以有效地捕捉局部时空图中的异质性。在四个真实数据集上进行了大量实验,结果表明我们的方法达到了最先进的性能,并且始终优于其他基线。
  • Abstract
    Spatial-temporal network data forecasting is of great importance in a huge amount of applications for traffic management and urban planning. However, the underlying complex spatial-temporal correlations and heterogeneities make this problem challenging. Existing methods usually use separate components to capture spatial and temporal correlations and ignore the heterogeneities in spatial-temporal data. In this paper, we propose a novel model, named Spatial-Temporal Synchronous Graph Convolutional Networks (STSGCN), for spatial-temporal network data forecasting. The model is able to effectively capture the complex localized spatial-temporal correlations through an elaborately designed spatial-temporal synchronous modeling mechanism. Meanwhile, multiple modules for different time periods are designed in the model to effectively capture the heterogeneities in localized spatial-temporal graphs. Extensive experiments are conducted on four real-world datasets, which demonstrates that our method achieves the state-of-the-art performance and consistently outperforms other baselines.
  • model图片
    在这里插入图片描述
  • bib
@article{2020Spatial,
  title={Spatial-Temporal Synchronous Graph Convolutional Networks: A New Framework for Spatial-Temporal Network Data Forecasting},
  author={ Song, C.  and  Lin, Y.  and  Guo, S.  and  Wan, H. },
  journal={Proceedings of the AAAI Conference on Artificial Intelligence},
  volume={34},
  number={1},
  pages={914-921},
  year={2020},
}

1.5 Spatial-Temporal Fusion Graph Neural Networks for Traffic Flow Forecasting

俗称:STFGNN
原文
文章翻译
文章代码:https://github.com/MengzhangLI/STFGNN

  • 摘要
    交通流的时空数据预测是一项具有挑战性的任务,因为不同道路之间存在复杂的空间相关性和时间模式的动态趋势。现有的框架通常利用给定的空间邻接图和复杂的机制来建模空间和时间相关性。然而,不完全相邻连接的给定空间图结构的有限表示可能会限制这些模型的有效时空依赖学习。为了克服这些局限性,本文提出了用于交通流预测的时空融合图神经网络(STFGNN)。SFTGNN通过数据驱动的方法生成各种时空图,通过一种新的融合操作,可以有效地学习隐藏的时空依赖关系。同时,通过将该融合图模块和一个新的门卷积模块集成到一个统一的层中,SFTGNN可以处理长序列。在多个公共交通数据集上的实验结果表明,与其他基线相比,我们的方法一致地实现了最先进的性能。

  • Abstract
    Spatial-temporal data forecasting of traffic flow is a challenging task because of complicated spatial dependencies and dynamical trends of temporal pattern between different roads. Existing frameworks typically utilize given spatial adjacency graph and sophisticated mechanisms for modeling spatial and temporal correlations. However, limited representations of given spatial graph structure with incomplete adjacent connections may restrict effective spatial-temporal dependencies learning of those models. To overcome those limitations, our paper proposes Spatial-Temporal Fusion Graph Neural Networks (STFGNN) for traffic flow forecasting. SFTGNN could effectively learn hidden spatial-temporal dependencies by a novel fusion operation of various spatial and temporal graphs, which is generated by a data-driven method. Meanwhile, by integrating this fusion graph module and a novel gated convolution module into a unified layer, SFTGNN could handle long sequences. Experimental results on several public traffic datasets demonstrate that our method achieves state-of-the-art performance consistently than other baselines.

  • model图片
    在这里插入图片描述

  • bib

@article{2020STFGNN,
  title={Spatial-Temporal Fusion Graph Neural Networks for Traffic Flow Forecasting},
  author={ Li, M.  and  Zhu, Z. },
  year={2020},
}
### ST-GCN++ 双流融合实现方法 #### 数据预处理 为了有效应用双流自适应图卷积网络 (2s-AGCN),首先需要对输入数据进行适当预处理。这包括调整张量形状以匹配模型预期的输入格式: ```python import torch def preprocess_input(x): N, C, T, V, M = x.size() # 维度交换并保持显存连续 x = x.permute(0, 4, 3, 1, 2).contiguous().view(N * M, V * C, T) # 应用批标准化操作 data_bn_layer = torch.nn.BatchNorm1d(V * C) x = data_bn_layer(x) # 调整回原始维度顺序 x = x.view(N, M, V, C, T).permute(0, 1, 3, 4, 2).contiguous().view(N * M, C, T, V) return x ``` 此过程确保了输入特征能够被有效地传递给后续层,从而提高训练效率和效果[^3]。 #### 构建双流架构 在构建双流结构时,分别针对关节空间(Joint Space)和骨骼运动(Bone Motion)设计两个独立但相似的分支。每个分支都采用改进后的时空图卷积(ST-GCN++)作为核心组件来捕捉不同模态下的动态模式: ```python class TwoStreamAdaptiveGCN(nn.Module): def __init__(self): super(TwoStreamAdaptiveGCN, self).__init__() # 定义共享参数或特定于各流的独特配置... pass def forward(self, joint_stream, bone_stream): # 对两路输入分别执行前向传播计算 # 假设已经定义好了具体的ST_GCN_PlusPlus模块 output_joint = self.st_gcn_plusplus(joint_stream) output_bone = self.st_gcn_plusplus(bone_stream) # 将两者的结果拼接起来形成最终表示 combined_output = torch.cat((output_joint, output_bone), dim=1) return combined_output ``` 通过这种方式可以充分利用来自多个视角的信息,在动作识别任务上取得更好的表现[^2]。 实验结果显示当同时考虑关节位置变化与相邻节点间相对位移这两种特性时,即采取双流策略,整体性能明显优于仅依赖单一类型特征的情况[^1]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值