LangChain入门教程 - 表达式入门

本文介绍了LangChain表达式语言,如何通过链式操作简化流式处理和异步支持,以笑话生成器为例展示其使用。同时提及了RAG(检索增强生成)技术,通过结合检索模型和生成模型提高内容相关性和质量。
摘要由CSDN通过智能技术生成

什么是LangChain表达式

LangChain表达式语言,或者LCEL,是一种声明式的方式,可以轻松地将链条组合在一起。这一节我们还是关注具体应用,关于流式,异步支持,还有跟踪集成什么的以后再讲。

基本的表达式:提示 + 模型 + 输出解析器

我们这里写一个笑话生成器,把提示模板,模型还是格式化输出链接在一起,接受一个主题并创建笑话。

from langchain_community.chat_models import QianfanChatEndpoint
from langchain_core.output_parsers import StrOutputParser
from langchain_core.prompts import ChatPromptTemplate

# 创建ChatModel
chat = QianfanChatEndpoint(
    model='ERNIE-Bot',
    endpoint='completions'
)

prompt = ChatPromptTemplate.from_template('给我讲一个关于{topic}的笑话吗?要求100字以内。')
output_parser = StrOutputParser()

# 注意:| 符号类似于 unix 管道操作符,它将不同的组件链接在一起,将一个组件的输出作为下一个组件的输入。
chain = prompt | chat | output_parser

r = chain.invoke({'topic': '大象'})
print(r)

'''输出
有一天,一只大象走进了一家酒吧,它对酒吧的调酒师说:“给我一杯啤酒。”调酒师惊讶地看着它说:“可是,你是一头大象,你怎么喝酒呢?”大象笑了笑,说:“我已经练了好几年的鼻子功夫了,没问题的!”
'''

如果不用LCEL,那么代码执行代码就必须按如下方式编写:

prompt_value = prompt.invoke({'topic': '大象'})
print(prompt_value) # 看一下prompt展开后的内容
r = chat.invoke(prompt_value)
output_parser.invoke(r)

RAG搜索实例

什么是RAG?检索增强生成,英文Retrieval-Augmented Generation的缩写。用书面语解释就是:通过将检索模型和生成模型结合在一起,从而提高了生成内容的相关性和质量。 通俗一点说就是你给大模型一点参考资料防止丫的胡说八道。为了实现RAG,我们必须在链条上加上参考资料的读取。代码如下:

from langchain_community.embeddings import QianfanEmbeddingsEndpoint
from langchain_community.llms import QianfanLLMEndpoint
from langchain_community.vectorstores import DocArrayInMemorySearch
from langchain_core.output_parsers import StrOutputParser
from langchain_core.prompts import ChatPromptTemplate
from langchain_core.runnables import RunnableParallel, RunnablePassthrough

llm = QianfanLLMEndpoint(model="ERNIE-Bot-turbo")

# 根据《前出师表》文本构造向量信息
text = ''
with open('前出师表.txt', 'r', encoding='utf-8') as f:
    text = f.read()
    
lines = [_line.strip() for _line in text.splitlines() if _line]

vectorstore = DocArrayInMemorySearch.from_texts(
    lines,
    embedding=QianfanEmbeddingsEndpoint(),
)
retriever = vectorstore.as_retriever()

# 构造LCEL
template = '基于以下上下文信息:{context}\n回答问题:{question}'

prompt = ChatPromptTemplate.from_template(template)
output_parser = StrOutputParser()
setup_and_retrieval = RunnableParallel({"context": retriever, "question": RunnablePassthrough()})

chain = setup_and_retrieval | prompt | llm | output_parser

r = chain.invoke('作者在文章中痛惜什么?')
print(r)
'''输出
作者在文章中痛惜的是先帝创业未半而中道崩殂,以及后汉倾颓的原因是亲小人远贤臣。作者在文章中提到先帝在时,每与臣论此事,未尝不叹息痛恨于桓、灵也,表达了对先帝的敬仰之情,同时也表达了对后汉倾颓的痛惜之情。此外,作者也提到汉室之兴衰与用人之道密切相关,希望后主能够亲贤臣,远小人,这样才能重振汉室。
'''

r = chain.invoke('哪些人是死节之臣?')
print(r)
'''输出
根据上下文信息,文中提到了侍中、尚书、长史、参军,此悉贞良死节之臣,因此可以得出这些人都是死节之臣。
'''

回顾一下整个工作流程:

  1. 首先,创建一个 RunnableParallel 对象,其中包含两个条目。第一个条目 context 将包含检索器检索到的文档结果。第二个条目 question 将包含用户的原始问题。为了传递问题,我们使用 RunnablePassthrough 来复制该条目。
  2. 将上述步骤中的字典提供给 prompt 组件。然后,它将用户输入(即 question)以及检索到的文档(即 context)用于构建提示,并输出 PromptValue
  3. llm 组件接受生成的提示,并将其传递给千帆大模型进行评估。模型生成的输出是一个 ChatMessage 对象。
  4. 最后,output_parser 组件接受一个 ChatMessage,将其转换为 Python 字符串,并从 invoke 方法返回。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值