【信号与系统 - 5】傅里叶变换性质2

这一篇涉及剩余的几个性质
⑤对称性(互易特性)
⑥时/频域卷积
⑦时域微/积分特性
⑧频域微/积分特性

1 对称性(互易特性)

  • 总的来说,有:
    f ( t ) ↔ F ( j w ) f(t)\leftrightarrow{F(jw)} f(t)F(jw)
    F ( j t ) ↔ 2 π f ( − w ) F(jt)\leftrightarrow{2\pi f(-w)} F(jt)2πf(w)
    简单说就是:发现一个时域信号 F ( j t ) F(jt) F(jt) 与另一个时域信号 f ( t ) f(t) f(t) 经傅里叶变换得到的频谱函数 F ( j w ) F(jw) F(jw) 的图像十分相似,就可以轻松地得到 F ( j t ) F(jt) F(jt) 这个时域信号对应的频谱函数

  • 如果 f ( t ) f(t) f(t) 为实数偶函数,则其频谱函数 F ( j ω ) F(jω) F() ω ω ω 的实数偶函数
    f ( t ) ↔ F ( w ) f(t)\leftrightarrow F(w) f(t)F(w)
    F ( t ) ↔ 2 π f ( w ) F(t)\leftrightarrow 2\pi f(w) F(t)2πf(w)


例1、直流信号与冲激信号
由:

f ( t ) = δ ( t ) ↔ F ( w ) = 1 f(t)=\delta(t)\leftrightarrow F(w)=1 f(t)=δ(t)F(w)=1

则:

F [ F ( t ) ] = 2 π δ ( w ) \mathscr{F}[{F(t)}]=2\pi\delta(w) F[F(t)]=2πδ(w)


例2、求 F − 1 [ g τ ( t ) ] \mathscr{F}^{-1}[g_\tau(t)] F1[gτ(t)]
先判断 f ( t ) = f ( − t ) f(t)=f(-t) f(t)=f(t) ,是实数偶函数
由:

f ( t ) = g τ ( t ) ↔ F ( w ) = τ S a ( τ 2 w ) f(t)=g_\tau(t)\leftrightarrow F(w)=\tau Sa(\frac{\tau}{2}w) f(t)=gτ(t)F(w)=τSa(2τw)

则:

F ( t ) = τ S a ( τ 2 t ) ↔ F [ F ( t ) ] = 2 π g τ ( w ) F(t)=\tau Sa(\frac{\tau}{2}t)\leftrightarrow \mathscr{F}[F(t)]=2\pi g_\tau(w) F(t)=τSa(2τt)F[F(t)]=2πgτ(w)

要求得 g τ ( w ) g_\tau(w) gτ(w),根据线性特性,两边同时乘以 1 2 π \frac{1}{2\pi} 2π1,则:

τ 2 π S a ( τ 2 t ) ↔ g τ ( w ) \frac{\tau}{2\pi} Sa(\frac{\tau}{2}t)\leftrightarrow{g_\tau(w)} 2πτSa(2τt)gτ(w)


例3、求 F [ 1 t 2 + 1 ] \mathscr{F}[\frac{1}{t^2+1}] F[t2+11]
注:这里视自变量 t t t 为 公共自变量 X X X,可以提高辨别度: 1 X 2 + 1 2 \frac{1}{X^2+1^2} X2+121
容易想到的是 F [ e − a ∣ t ∣ ] \mathscr{F}[e^{-a|t|}] F[eat] 的分母也是 X 2 + a 2 X^2+a^2 X2+a2 a a a 是个常数)
a = 1 a=1 a=1 时恰好对应: F [ e − ∣ t ∣ ] = 2 ∗ 1 X 2 + 1 \mathscr{F}[e^{-|t|}]=\frac{2*1}{X^2+1} F[et]=X2+121

f ( t ) = 1 2 e − ∣ t ∣ ↔ F ( w ) = 1 w 2 + 1 f(t)=\frac{1}{2}e^{-|t|}\leftrightarrow F(w)=\frac{1}{w^2+1} f(t)=21etF(w)=w2+11

则:

F ( t ) = 1 t 2 + 1 ↔ 1 2 2 π e − ∣ w ∣ = π e − ∣ w ∣ F(t)=\frac{1}{t^2+1}\leftrightarrow \frac{1}{2}2\pi e^{-|w|}=\pi e^{-|w|} F(t)=t2+11212πew=πew


例4、求 F [ 1 t ] \mathscr{F}[\frac{1}{t}] F[t1]
因为 F [ S g n ( t ) ] = 2 j w \mathscr{F}[Sgn(t)]=\frac{2}{jw} F[Sgn(t)]=jw2 ,( w ≠ 0 w\neq 0 w=0
若:

j S g n ( t ) 2 ↔ 1 w j\frac{Sgn(t)}{2}\leftrightarrow\frac{1}{w} j2Sgn(t)w1

则:

1 t ↔ j π S g n ( − w ) = − j π S g n ( w ) \frac{1}{t}\leftrightarrow j\pi Sgn(-w)=-j\pi Sgn(w) t1Sgn(w)=Sgn(w)


2 时/频域卷积

2-1 时域卷积

若:

{ f 1 ( t ) ↔ F 1 ( j w ) f 2 ( t ) ↔ F 2 ( j w ) \begin{cases} f_1(t)\leftrightarrow F_1(jw)\\ f_2(t)\leftrightarrow F_2(jw)\\ \end{cases} {f1(t)F1(jw)f2(t)F2(jw)

f 1 ( t ) ∗ f 2 ( t ) ↔ F 1 ( j w ) ⋅ F 2 ( j w ) f_1(t)*f_2(t)\leftrightarrow F_1(jw)\cdot F_2(jw) f1(t)f2(t)F1(jw)F2(jw)
要求 f 1 ( t ) f_1(t) f1(t) f 2 ( t ) f_2(t) f2(t) 的卷积,即求 F − 1 [ F 1 ( j w ) ⋅ F 2 ( j w ) ] \mathscr{F}^{-1}[F_1(jw)\cdot F_2(jw)] F1[F1(jw)F2(jw)]


证明 F [ f 1 ( t ) ∗ f 2 ( t ) ] = F 1 ( j w ) ⋅ F 2 ( j w ) \mathscr{F}[f_1(t)*f_2(t)]=F_1(jw)\cdot F_2(jw) F[f1(t)f2(t)]=F1(jw)F2(jw)

F [ f 1 ( t ) ∗ f 2 ( t ) ] = F [ ∫ − ∞ + ∞ f 1 ( τ ) ⋅ f 2 ( t − τ ) d τ ] \mathscr{F}[f_1(t)*f_2(t)]=\mathscr{F}[\int^{+\infty}_{-\infty}f_1(\tau)\cdot f_2(t-\tau)d\tau] F[f1(t)f2(t)]=F[+f1(τ)f2(tτ)dτ]
= ∫ − ∞ + ∞ [ ∫ − ∞ + ∞ f 1 ( τ ) ⋅ f 2 ( t − τ ) d τ ] e − j w t d t =\int^{+\infty}_{-\infty}\Big[\int^{+\infty}_{-\infty}f_1(\tau)\cdot f_2(t-\tau)d\tau\Big]e^{-jwt}dt =+[+f1(τ)f2(tτ)dτ]ejwtdt
d τ d\tau dτ 提到外面, d t dt dt 提进去:

= ∫ − ∞ + ∞ [ ∫ − ∞ + ∞ f 2 ( t − τ ) e − j w t d t ] f 1 ( τ ) d τ =\int^{+\infty}_{-\infty}\Big[\int^{+\infty}_{-\infty}f_2(t-\tau)e^{-jwt}dt\Big]f_1(\tau)d\tau =+[+f2(tτ)ejwtdt]f1(τ)dτ

其中 ∫ − ∞ + ∞ f 2 ( t − τ ) e − j w t d t \int^{+\infty}_{-\infty}f_2(t-\tau)e^{-jwt}dt +f2(tτ)ejwtdt 就是频谱函数
t ′ = t ± t 0 t'=t\pm t_0 t=t±t0

∫ − ∞ + ∞ f ( t ± t 0 ) e − j w t d t = ∫ − ∞ + ∞ f ( t ′ ) e − j w ( t ′ ∓ t 0 ) d t ′ = e ± j w t 0 ∫ − ∞ + ∞ f ( t ′ ) e − j w t ′ d t ′ \int^{+\infty}_{-\infty}f(t\pm t_0)e^{-jwt}dt=\int^{+\infty}_{-\infty}f(t')e^{-jw(t'\mp t_0)}dt'=e^{\pm jwt_0}\int^{+\infty}_{-\infty}f(t')e^{-jwt'}dt' +f(t±t0)ejwtdt=+f(t)ejw(tt0)dt=e±jwt0+f(t)ejwtdt

由于 ∫ − ∞ + ∞ f ( t ′ ) e − j w t ′ d t ′ = ∫ − ∞ + ∞ f ( t ) e − j w t d t \int^{+\infty}_{-\infty}f(t')e^{-jwt'}dt'=\int^{+\infty}_{-\infty}f(t)e^{-jwt}dt +f(t)ejwtdt=+f(t)ejwtdt
t t t 替换掉 t ′ t' t

∫ − ∞ + ∞ f ( t ± t 0 ) e − j w t d t = e ± j w t 0 ∫ − ∞ + ∞ f ( t ) e − j w t d t = e ± j w t 0 F ( j w ) \int^{+\infty}_{-\infty}f(t\pm t_0)e^{-jwt}dt=e^{\pm jwt_0}\int^{+\infty}_{-\infty}f(t)e^{-jwt}dt=e^{\pm jwt_0}F(jw) +f(t±t0)ejwtdt=e±jwt0+f(t)ejwtdt=e±jwt0F(jw)

其实上面一小段证明的就是傅里叶变换的时移性质
则:

F [ f 1 ( t ) ∗ f 2 ( t ) ] = F 2 ( j w ) ∫ − ∞ + ∞ e − j w τ f 1 ( τ ) d τ \mathscr{F}[f_1(t)*f_2(t)]=F_2(jw)\int^{+\infty}_{-\infty}e^{-jw\tau}f_1(\tau)d\tau F[f1(t)f2(t)]=F2(jw)+ejwτf1(τ)dτ

其中 ∫ − ∞ + ∞ e − j w τ f 1 ( τ ) d τ \int^{+\infty}_{-\infty}e^{-jw\tau}f_1(\tau)d\tau +ejwτf1(τ)dτ,可以用 t t t 代替 τ \tau τ,则 ∫ − ∞ + ∞ e − j w τ f 1 ( τ ) d τ = F 1 ( j w ) \int^{+\infty}_{-\infty}e^{-jw\tau}f_1(\tau)d\tau=F_1(jw) +ejwτf1(τ)dτ=F1(jw)
整合后即证得: F [ f 1 ( t ) ∗ f 2 ( t ) ] = F 1 ( j w ) ⋅ F 2 ( j w ) \mathscr{F}[f_1(t)*f_2(t)]=F_1(jw)\cdot F_2(jw) F[f1(t)f2(t)]=F1(jw)F2(jw)


由上面的结论易知:

F [ g τ 2 ( t ) ] = τ 2 S a 2 ( w τ 2 ) \mathscr{F}[g_\tau^2(t)]=\tau^2Sa^2(\frac{w\tau}{2}) F[gτ2(t)]=τ2Sa2(2wτ)

在这里插入图片描述

2-1-1 时域卷积应用

在求解系统 Z S R 零状态相应 ZSR零状态相应 ZSR零状态相应 时,时域中, y ( t ) = f ( t ) ∗ h ( t ) y(t)=f(t)*h(t) y(t)=f(t)h(t),可以先求出 f ( t ) 与 h ( t ) f(t)与h(t) f(t)h(t) 各自的频谱函数,二者点乘后得到 y ( t ) y(t) y(t) 的频谱函数,再进行傅里叶反变换

2-2 频域卷积

直接给出结论:

f 1 ( t ) ⋅ f 2 ( t ) ↔ 1 2 π F 1 ( j w ) ∗ F 2 ( j w ) f_1(t)\cdot f_2(t)\leftrightarrow \frac{1}{2\pi}F_1(jw)*F_2(jw) f1(t)f2(t)2π1F1(jw)F2(jw)

可以搭配 F − 1 [ f ( t ) ] = 1 2 π ∫ − ∞ + ∞ F ( j w ) e j w t d w \mathscr{F}^{-1}[f(t)]=\frac{1}{2\pi}\int^{+\infty}_{-\infty}F(jw)e^{jwt}dw F1[f(t)]=2π1+F(jw)ejwtdw 公式记忆,而时域卷积 F [ f 1 ( t ) ∗ f 2 ( t ) ] = F 1 ( j w ) ⋅ F 2 ( j w ) \mathscr{F}[f_1(t)*f_2(t)]=F_1(jw)\cdot F_2(jw) F[f1(t)f2(t)]=F1(jw)F2(jw) 可搭配 F [ f ( t ) ] = ∫ − ∞ + ∞ f ( t ) e − j w t d t \mathscr{F}[f(t)]=\int^{+\infty}_{-\infty}f(t)e^{-jwt}dt F[f(t)]=+f(t)ejwtdt 公式记忆

3 时域微/积分特性

3-1 时域微分特性

f ( t ) ↔ F ( j w ) f(t)\leftrightarrow F(jw) f(t)F(jw)
d d t [ f ( t ) ] ↔ j w F ( j w ) \frac{d}{dt}[f(t)]\leftrightarrow jwF(jw) dtd[f(t)]jwF(jw)


证明 j w F ( j w ) jwF(jw) jwF(jw) 的傅里叶反变换为 d d t [ f ( t ) ] \frac{d}{dt}[f(t)] dtd[f(t)]
f ( t ) = 1 2 π ∫ − ∞ + ∞ F ( j w ) e j w t d w f(t)=\frac{1}{2\pi}\int^{+\infty}_{-\infty}F(jw)e^{jwt}dw f(t)=2π1+F(jw)ejwtdw,两边同时对 t t t 求导得:

d d t [ f ( t ) ] = 1 2 π ∫ − ∞ + ∞ F ( j w ) ⋅ d d t ( e j w t ) d w = 1 2 π ∫ − ∞ + ∞ j w F ( j w ) ⋅ e j w t d w \frac{d}{dt}[f(t)]=\frac{1}{2\pi}\int^{+\infty}_{-\infty}F(jw)\cdot\frac{d}{dt}(e^{jwt})dw=\frac{1}{2\pi}\int^{+\infty}_{-\infty}jwF(jw)\cdot e^{jwt}dw dtd[f(t)]=2π1+F(jw)dtd(ejwt)dw=2π1+jwF(jw)ejwtdw


例:冲激信号与直流信号
f ( t ) = δ ( t ) ↔ F ( w ) = 1 f(t)=\delta(t)\leftrightarrow F(w)=1 f(t)=δ(t)F(w)=1
则: δ ( n ) ( t ) ↔ ( j w ) n \delta^{(n)}(t)\leftrightarrow (jw)^n δ(n)(t)(jw)n


3-1-1 时域微分特性的应用

易知:可以将一个复杂的信号进行 n n n 次求导直至变成一个熟悉的信号(已知该信号的频谱函数),将这个熟悉的信号的频谱函数除以 n n n j w jw jw 即可得到复杂信号的频谱函数

  • 例:梯形信号
    在这里插入图片描述

f ( t ) f(t) f(t) 求一阶导得到两端矩形信号,再做一次求导得到4个冲激信号:

在这里插入图片描述

3-2 时域积分特性

f ( t ) ↔ F ( j w ) f(t)\leftrightarrow F(jw) f(t)F(jw)
∫ − ∞ t f ( τ ) d τ ↔ π F ( 0 ) δ ( w ) + F ( j w ) j w \int^t_{-\infty}f(\tau)d\tau\leftrightarrow \pi F(0)\delta(w)+\frac{F(jw)}{jw} tf(τ)dτπF(0)δ(w)+jwF(jw)


证明:

∫ − ∞ t f ( τ ) d τ = f ( t ) ∗ u ( t ) \int^t_{-\infty}f(\tau)d\tau=f(t)*u(t) tf(τ)dτ=f(t)u(t),根据时域卷积性质 F [ f 1 ( t ) ∗ f 2 ( t ) ] = F 1 ( j w ) ⋅ F 2 ( j w ) \mathscr{F}[f_1(t)*f_2(t)]=F_1(jw)\cdot F_2(jw) F[f1(t)f2(t)]=F1(jw)F2(jw),易得:

F [ f ( t ) ∗ u ( t ) ] = F ( j w ) ⋅ [ π δ ( w ) + 1 j w ] \mathscr{F}[f(t)*u(t)]=F(jw)\cdot[\pi\delta(w)+\frac{1}{jw}] F[f(t)u(t)]=F(jw)[πδ(w)+jw1]

根据 δ ( t ) \delta(t) δ(t) 的采样性质 f ( t ) δ ( t ) = f ( 0 ) δ ( t ) f(t)\delta(t)=f(0)\delta(t) f(t)δ(t)=f(0)δ(t)

F [ f ( t ) ∗ u ( t ) ] = π F ( 0 ) δ ( w ) + F ( j w ) j w \mathscr{F}[f(t)*u(t)]=\pi F(0)\delta(w)+\frac{F(jw)}{jw} F[f(t)u(t)]=πF(0)δ(w)+jwF(jw)

其中 F ( 0 ) = ∫ − ∞ + ∞ f ( t ) e 0 d t F(0)=\int^{+\infty}_{-\infty}f(t)e^0dt F(0)=+f(t)e0dt


4 频域微/积分特性

4-1 频域的微分特性

f ( t ) ↔ F ( j w ) f(t)\leftrightarrow F(jw) f(t)F(jw)
( − j t ) n f ( t ) ↔ F ( n ) ( j w ) (-jt)^nf(t)\leftrightarrow F^{(n)}(jw) (jt)nf(t)F(n)(jw)
拓展: t f ( t ) ↔ j F ′ ( j w ) tf(t)\leftrightarrow jF'(jw) tf(t)jF(jw) t n f ( t ) ↔ j n F ( n ) ( j w ) t^nf(t)\leftrightarrow j^nF^{(n)}(jw) tnf(t)jnF(n)(jw)


  • 例、求 F [ ∣ t ∣ ] \mathscr{F}[|t|] F[t]
    其中 ∣ t ∣ = t ⋅ S g n ( t ) |t|=t\cdot Sgn(t) t=tSgn(t),可视 f ( t ) = S g n ( t ) f(t)=Sgn(t) f(t)=Sgn(t),且 S g n ( t ) ↔ 2 j w Sgn(t)\leftrightarrow\frac{2}{jw} Sgn(t)jw2
    则:

F [ ∣ t ∣ ] = j ( 2 j w ) ′ = 2 w 2 \mathscr{F}[|t|]=j(\frac{2}{jw})'=\frac{2}{w^2} F[t]=j(jw2)=w22


4-2 频域的积分特性

f ( t ) ↔ F ( j w ) f(t)\leftrightarrow F(jw) f(t)F(jw)
π f ( 0 ) δ ( t ) + f ( t ) − j t ↔ ∫ − ∞ w F ( η ) d η \pi f(0)\delta(t)+\frac{f(t)}{-jt}\leftrightarrow \int^w_{-\infty}F(\eta)d\eta πf(0)δ(t)+jtf(t)wF(η)dη


  • 例、抽样函数 S a ( t ) = s i n ( t ) t Sa(t)=\frac{sin(t)}{t} Sa(t)=tsin(t)
    由于 s i n ( t ) t \frac{sin(t)}{t} tsin(t) f ( t ) − j t \frac{f(t)}{-jt} jtf(t) 很相似,则视 f ( t ) = s i n ( t ) f(t)=sin(t) f(t)=sin(t)
    又因为 s i n ( t ) ↔ j π [ δ ( w + 1 ) − δ ( w − 1 ) ] sin(t)\leftrightarrow j\pi[\delta(w+1)-\delta(w-1)] sin(t)[δ(w+1)δ(w1)],则:

π f ( 0 ) δ ( t ) + s i n ( t ) − j t ↔ ∫ − ∞ w j π [ δ ( η + 1 ) − δ ( η − 1 ) ] d η \pi f(0)\delta(t)+\frac{sin(t)}{-jt}\leftrightarrow \int^w_{-\infty}j\pi[\delta(\eta+1)-\delta(\eta-1)]d\eta πf(0)δ(t)+jtsin(t)w[δ(η+1)δ(η1)]dη

则:

s i n ( t ) − j t ↔ j π ∫ − ∞ w [ δ ( η + 1 ) − δ ( η − 1 ) ] d η \frac{sin(t)}{-jt}\leftrightarrow j\pi\int^w_{-\infty}[\delta(\eta+1)-\delta(\eta-1)]d\eta jtsin(t)w[δ(η+1)δ(η1)]dη

s i n ( t ) − j t ↔ j π [ u ( w + 1 ) − u ( w − 1 ) ] \frac{sin(t)}{-jt}\leftrightarrow j\pi[u(w+1)-u(w-1)] jtsin(t)[u(w+1)u(w1)]
s i n ( t ) t ↔ π [ u ( w + 1 ) − u ( w − 1 ) ] = π g 2 ( w ) \frac{sin(t)}{t}\leftrightarrow \pi[u(w+1)-u(w-1)]=\pi g_2(w) tsin(t)π[u(w+1)u(w1)]=πg2(w)

  • 18
    点赞
  • 12
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
信号与系统是一门研究信号的传输、处理和分析等问题的学科。傅里叶变换、拉普拉斯变换和z变换则是信号与系统中的三种重要数学工具。下面,我们来汇总一下傅里叶变换、拉普拉斯变换和z变换公式以及相关性质傅里叶变换公式: $$F(\omega)=\mathcal{F}\{f(t)\}=\int_{-\infty}^{\infty}f(t)e^{-j\omega t}dt$$ 逆傅里叶变换公式: $$f(t)=\mathcal{F}^{-1}\{F(\omega)\}=\frac{1}{2\pi}\int_{-\infty}^{\infty}F(\omega)e^{j\omega t}d\omega$$ 拉普拉斯变换公式: $$F(s)=\mathcal{L}\{f(t)\}=\int_{0^-}^{\infty}f(t)e^{-st}dt$$ 逆拉普拉斯变换公式: $$f(t)=\mathcal{L}^{-1}\{F(s)\}=\frac{1}{2\pi j}\int_{\sigma-j\infty}^{\sigma+j\infty}F(s)e^{st}ds$$ z变换公式: $$F(z)=\mathcal{Z}\{f(n)\}=\sum_{n=-\infty}^{\infty}f(n)z^{-n}$$ 逆z变换公式: $$f(n)=\mathcal{Z}^{-1}\{F(z)\}=\frac{1}{2\pi j}\oint_C F(z)z^{n-1}dz$$ 傅里叶变换、拉普拉斯变换、z变换的基本性质: 1. 线性性质:对于任意常数a,b,有$\mathcal{F}\{af(t)+bg(t)\}=a\mathcal{F}\{f(t)\}+b\mathcal{F}\{g(t)\}$,$\mathcal{L}\{af(t)+bg(t)\}=a\mathcal{L}\{f(t)\}+b\mathcal{L}\{g(t)\}$,$\mathcal{Z}\{af(n)+bg(n)\}=a\mathcal{Z}\{f(n)\}+b\mathcal{Z}\{g(n)\}$。 2. 平移性质:对于任意常数$a$,有$\mathcal{F}\{f(t-a)\}=e^{-j\omega a}\mathcal{F}\{f(t)\}$,$\mathcal{L}\{f(t-a)\}=e^{-sa}\mathcal{L}\{f(t)\}$,$\mathcal{Z}\{f(n-a)\}=z^{-a}\mathcal{Z}\{f(n)\}$。 3. 改变因子:对于任意常数$a$,有$\mathcal{F}\{f(at)\}=\frac{1}{|a|}\mathcal{F}\{f(t)\}$,$\mathcal{L}\{f(at)\}=\frac{1}{a}\mathcal{L}\{f(t)\}$,$\mathcal{Z}\{f(an)\}=z^{-n}\mathcal{Z}\{f(n)\}$。 4. 卷积定理:对于两个信号$f(t)$和$g(t)$,有$\mathcal{F}\{f(t)*g(t)\}=\mathcal{F}\{f(t)\}\cdot\mathcal{F}\{g(t)\}$,$\mathcal{L}\{f(t)*g(t)\}=\mathcal{L}\{f(t)\}\cdot\mathcal{L}\{g(t)\}$,$\mathcal{Z}\{f(n)*g(n)\}=\mathcal{Z}\{f(n)\}\cdot\mathcal{Z}\{g(n)\}$。 5. 能量守恒:对于信号$f(t)$或$f(n)$,有$\int_{-\infty}^{\infty}|f(t)|^2dt=\frac{1}{2\pi}\int_{-\infty}^{\infty}|F(\omega)|^2d\omega$,$\int_{0^-}^{\infty}|f(t)|^2dt=\frac{1}{2\pi j}\int_{\sigma-j\infty}^{\sigma+j\infty}|F(s)|^2ds$,$\sum_{n=-\infty}^{\infty}|f(n)|^2=\frac{1}{2\pi}\oint_C |F(z)|^2\frac{dz}{z}$。 通过傅里叶变换、拉普拉斯变换和z变换公式及其相关性质,我们可以对信号进行分析和处理,从而更好地理解和设计信号与系统

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值