深度学习
文章平均质量分 85
dadadaplz
这个作者很懒,什么都没留下…
展开
-
Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift
BackgroundCovariance shift ——when the input distribution to a learning system changes, it is said to experience covariance shift.当这种现象发生在多层神经网络之间时,即前面层参数的改变,使得后面层的输入分布发生改变时,就叫Internal covariance shif原创 2017-08-24 16:32:14 · 2000 阅读 · 0 评论 -
From Inception to Xception
首先介绍1x1卷积核的作用,其次分别引出Inception及Xception的思想1x1卷积核的作用1.实现跨通道信息的整合或拆分首先看一下2x2的卷积核输入:4x4x3 卷积核:2x2x3x1 输出:3x3x1 2X2的卷积核将图中的12个输入节点组合映射到1个输出节点上。 接着看1x1的卷积核输入:4x4x3 卷积核:1x1x3x2 输出:4x4x2 1x1的卷积核将下面左原创 2017-08-23 10:33:21 · 512 阅读 · 0 评论 -
ResNet:Deep Residual Learning for Image Recognition
背景 There exists a solution by construction to the deeper model: the added layers are constructed as identity mappings, and the other layers are copied from the learned shallower model. The existence原创 2017-08-22 20:36:31 · 934 阅读 · 0 评论 -
Visualizing and Understanding Convolutional Networks阅读笔记
本文采用Deconvnet对CNN学习到的features进行可视化。核心思想 对CNN的第n层中的某一个feature map,每一个unit就是一个activation,当我们想要可视化某一个activation时,将第n层中除了这个activation以外的所有feature maps中的activations都设为零,一起输入给deconvnet,即可得到一个reconstruction原创 2017-08-21 19:08:11 · 1103 阅读 · 1 评论 -
RCNN:Rich feature hierarchies for accurate object detection and semantic segmentation
RCNN:Regions with CNN背景 在RCNN出现以前,目标检测系统一般通过将多个low-level图像特征进行结合,来产生high-level的特征。创新点 1.将CNN与region proposals相结合,首次展现出CNN在object detection问题上的强大威力,各种碾压传统方法 2.将图像分类与目标检测联系起来,利用预训练好的图像分类模型+少量数据的domain原创 2017-08-18 16:49:21 · 412 阅读 · 0 评论 -
深度学习中的卷积与反卷积
深度学习中的卷积与反卷积卷积与反卷积操作在图像分类、图像分割、图像生成、边缘检测等领域都有很重要的作用。为了讲明白这两种操作,特别是反卷积操作,本文将依照 * 神经网络中的编码器——解码器——卷积——反卷积* 的思路来一步步介绍。编码器神经网络本质上就是一个线性变换,通过将输入的多维向量与权重矩阵相乘,得到一个新的多维向量。当输入向量的维度高于输出向量的维度时,神经网络就相当于一个编码器,例如下图原创 2017-07-16 16:31:00 · 43170 阅读 · 3 评论 -
论文笔记understanding black-box predictions via influence functions
Purpose **To formalize the impact of a training point on a prediction, we ask the counterfactual: what would happen if we did not have this training point, or if the values of this training point w原创 2017-09-15 15:34:57 · 7058 阅读 · 5 评论 -
Meta Learning
Meta learning就是learning to learn,字面意思就是学会学习。想一下人是怎么学会学习的: 采用一种学习方法(比如刷题/背题/背概念等)进行学习,然后得到反馈(成绩是否提高),如果是正的反馈(成绩不断提高),说明这种学习方法是有效的。 那么神经网络是如何学会学习的呢? 采用一种学习方法(对于神经网络来说,就是模型的参数)进行学习,然后得到反馈(误差关于参数的梯度),原创 2017-09-17 22:09:32 · 10015 阅读 · 0 评论