统计机器学习
文章平均质量分 81
dadadaplz
这个作者很懒,什么都没留下…
展开
-
Andrew Ng机器学习笔记1
吴恩达机器学习课程的学习笔记~原创 2016-04-26 16:15:47 · 2315 阅读 · 0 评论 -
神经网络中的优化算法
什么是优化算法? 给定一个具有参数θ的目标函数,我们想要找到一个w使得目标函数取得最大值或最小值。优化算法就是帮助我们找到这个θ的算法。 在神经网络中,目标函数f就是预测值与标签的误差,我们希望找到一个θ使得f最小。优化算法的种类一阶优化算法 它通过计算目标函数f关于参数θ的梯度(一阶偏导数)来最小化代价函数。常用的SGD、Adam、RMSProp等基于梯度的优化算法都属于一阶优化算法。原创 2017-09-12 11:14:47 · 15426 阅读 · 0 评论 -
逻辑回归、交叉熵、softmax
什么时候用softmax? softmax是一种归一化函数,用于将向量中元素的值都归一化0~1之间,并保持其加和为1。 公示表达为: 根据公式和图片可看出,前一层的激活值越大,经过softmax函数后的值也就越大,又因为softmax的所有输出加和为1,因此,常利用softmax层将激活值与概率实现映射。 多元分类(multi-class classification)中,每个样本只原创 2017-09-08 20:45:32 · 2293 阅读 · 0 评论 -
论文笔记understanding black-box predictions via influence functions
Purpose **To formalize the impact of a training point on a prediction, we ask the counterfactual: what would happen if we did not have this training point, or if the values of this training point w原创 2017-09-15 15:34:57 · 7058 阅读 · 5 评论 -
梯度下降法Python代码
前一篇已经总结了梯度下降法,今天尝试将代码用Python实现,之所以选择Python是因为用python写的代码可以短一些=。=如果哪里不对了,希望可以帮我纠正~~首先是批量随机梯度法,适用于训练样本数目不是特别多的情况,而且可以用于样本特征数目n更多的情况:# -*- coding: cp936 -*-#Training data set#-----by plzimpo原创 2016-04-28 10:00:36 · 2883 阅读 · 1 评论 -
About Adaboost
关于Adaboost算法的实现细节,特别讲了改变样本分布的两种方法。原创 2017-05-25 14:07:55 · 703 阅读 · 0 评论 -
特征值分解与奇异值分解
特征值分解与奇异值分解的几何意义、公式表达其区别与联系原创 2017-07-20 21:05:36 · 786 阅读 · 0 评论 -
cross-entropy for one-stage detecor
将讲述三种cross-entropy,分别为standard cross-entropy、 balanced cross-entropy、focal loss。standard cross-entropy standard cross-entropy认为各个训练样本的权重是一样的,若用p_t表示样本属于true class的概率,则: standard原创 2017-08-12 21:15:04 · 1813 阅读 · 0 评论 -
欢迎使用CSDN-markdown编辑器
深度学习中的卷积与反卷积操作详解原创 2017-07-16 16:17:14 · 274 阅读 · 0 评论 -
Andrew Ng机器学习笔记2——梯度下降法and最小二乘拟合
今天正式开始学习机器学习的算法,老师首先举了一个实例:已知某地区的房屋面积与价格的一个数据集,那么如何预测给定房屋面积的价格呢?我们大部分人可以想到的就是将画出房屋面积与价格的散点图,然后拟合出价格关于面积的曲线,那么对于一个已知的房屋面积,就可以在拟合的曲线上得到预测的价格。这个问题就是回归。要想用数学方法解决这一问题,肯定得定义一堆符号来描述问题啦,下面是符号定义:符号定义原创 2016-04-26 16:48:00 · 5431 阅读 · 2 评论 -
距离度量之马氏距离
马氏距离 用来度量一个样本点P与数据分布为D的集合的距离。 假设样本点为: 数据集分布的均值为: 协方差矩阵为S。 则这个样本点P与数据集合的马氏距离为: 马氏距离也可以衡量两个来自同一分布的样本x和y的相似性: 当样本集合的协方差矩阵是单位矩阵时,即样本的各个维度上的方差均为1.马氏距离就等于欧式距离相等。 当协方差矩阵原创 2017-09-02 16:08:50 · 30814 阅读 · 4 评论