Andrew Ng机器学习笔记2——梯度下降法and最小二乘拟合

这篇博客介绍了机器学习中的线性回归问题,通过一个房屋面积与价格的实例引出最小二乘拟合和梯度下降法。文章详细阐述了梯度下降法的工作原理,解释了如何寻找函数局部最小值,并探讨了参数初始值对算法的影响。同时,还提到了随机梯度下降法作为优化策略。最后,简要介绍了最小二乘拟合法的相关知识。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

今天正式开始学习机器学习的算法,老师首先举了一个实例:已知某地区的房屋面积与价格的一个数据集,那么如何预测给定房屋面积的价格呢?我们大部分人可以想到的就是将画出房屋面积与价格的散点图,然后拟合出价格关于面积的曲线,那么对于一个已知的房屋面积,就可以在拟合的曲线上得到预测的价格。这个问题就是回归

要想用数学方法解决这一问题,肯定得定义一堆符号来描述问题啦,下面是符号定义


符号定义完了,来看看我们究竟需要解决什么问题:


先找到一个训练样本集合,提供给学习

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值