分子动力学中的物理量计算——分子动力学仿真及其在离子阱中运用 学习与实践分享第1.1

本文介绍了分子动理论的基本概念,包括分子间的运动规律、玻尔兹曼和麦克斯韦分布,以及如何通过这些理论计算温度、内能、压强和化学势等热力学量。文章还讨论了平衡态和非平衡态下的输运现象,以及在分子动力学仿真中的应用。
摘要由CSDN通过智能技术生成

本篇序言

关于本系列写作背景,可以参考序章。这是一个物理方向博士萌新的学习和实践过程分享,仅供参考和探讨。
我们进行仿真通常不会只是想要了解分子每时每刻在哪里,这不能提供太多我们关心的信息。我们常常希望了解一些更加有意义的量。它们大多是众多分子运动自由度的某种线性组合出的宏观自由度,也即表达整个热力学系统整体某些性质的热力学量。
我们在本篇中首先考虑的是我们的仿真已经结束了,需要从结果中求取物理量的情景。考虑到前面的仿真部分有众多优秀的前辈写成的强大软件工具帮助,这是我们想要解决实际物理问题需要考虑的一个重要部分。

分子动理论和热力学量

分子动理论

首先我们复习一下分子动理论。

根据分子动理论,物质是由微小的分子组成的。这些分子不断地运动着,它们之间相互碰撞、相互作用。这种分子的运动是具有统计规律性的,即使每个分子的运动都是不规则的,但是当我们观察大量分子时,它们的运动表现出一定的规律。分子动理论给出了几个关键的假设,其中最重要的是:

  • 分子是微观粒子:分子是物质的基本组成单位,具有质量、体积和能量。它们可以是原子、离子或原子团。
  • 分子之间有相互作用:分子之间通过相互作用力来影响彼此的运动。这些相互作用力可以是引力、斥力或化学键等。
  • 分子的运动是无规则的:每个分子的运动是不可预测和不规则的,在任何给定时刻,它们都会以高速和不同的方向运动。
  • 分子之间有碰撞:分子不断地相互碰撞,这些碰撞可能是弹性碰撞(碰撞后能量守恒)、非弹性碰撞(碰撞后能量不守恒)或完全不弹性碰撞(碰撞后粘在一起)。

分子动理论提供了一种解释物质行为的框架,通过研究分子的运动和相互作用,我们可以理解物质的性质、状态变化以及化学反应的发生。

显然的,分子动理论将宏观发生的物理现象与微观的粒子运动联系起来了,而微观的粒子运动又遵循着简单的或者至少可以简化作遵循简单的牛顿运动定律,这也是分子动力学仿真可以用于模拟宏观物理效应的理论前提。

从分子的速度、能量到温度

这里希望从热力学的基础开始进行更完整的逻辑叙述,可以酌情跳过。

速度的概率性分布规律

由于我们讨论很大一个分子的集合,而我们知道,分子的运动是“无序”的,无序的事物通常采用概率分布来描述它的规律性,因此我们就有了速度的概率分布。这部分内容在大学普通物理课程中我们已经熟悉了,也就是麦克斯韦和玻尔兹曼分布:

玻尔兹曼分布律

玻尔兹曼分布律是相互作用可以忽略的系统中普遍的关系,它考虑两个可能存在粒子分布的状态1和2,它们之上有一定的粒子密度分布 n 1 n_1 n1 n 2 n_2 n2,那么它们的粒子分布概率存在关系: N 1 N 2 = e x p ( − ϵ 1 − ϵ 2 k T ) \frac{N_1}{N_2}=exp(-\frac{\epsilon_1-\epsilon_2}{kT}) N2N1=exp(kTϵ1ϵ2)
这里的k是玻尔兹曼常数。
对于态的概念,在量子力学的情形下反而更容易理解。在我们常见的情形下,我们可以十分粗浅的将态空间中的单位微元视作一个态,这通常也恰好是正确的。这应当从简并度来证明,好在这些分布律暂时不是本系列的重点,我们可以忽略它。

麦克斯韦分布律

我们常常对于一个热力学系统选择一个最喜欢的简洁模型,即(单原子)理想气体模型。这个模型下分子之间没有相互作用,没有体积。当单一分子构成的理想气体处于平衡态且恒温的条件下,任取一个分子,其某一速度分量 v i v_i vi处于 v v v附近 d v i dv_i dvi大小的一个范围的概率为 ( m 2 π k T ) 1 2 ⋅ e x p ( − m v 2 2 k T ) (\frac{m}{2\pi kT})^\frac{1}{2}\cdot exp(-\frac{mv^2}{2kT}) (2πkTm)21exp(2kTmv2)
这里的m是一个这种单一的气体分子的质量。从形式上看,显然麦克斯韦分布是玻尔兹曼分布在只考虑动能项情况下,完成了归一化的式子。
在我们一般的三维空间系统中,理想气体假设导致三个方向上速度的分布是独立的,上述式子对各方向速度分量同时有效。考虑将速度空间以原点为中心按照球壳形状切分微元,也就是将P(x,y,z)换成P(r, θ \theta θ, ϕ \phi ϕ),不难导出所谓的“麦克斯韦速率分布”。

特征速率公式及“温度定义式”

根据麦克斯韦速率分布,可以通过积分或者求导求出三个理想气体系统的“特征速率”,分别是平均速率 v ˉ = 8 k T π m \bar{v}=\sqrt{\frac{8kT}{\pi m}} vˉ=πm8kT ,方均根速率 v 2 ˉ = 3 k T m \bar{v^2}=\frac{3kT}{m} v2ˉ=m3kT,最概然速率 v p = 2 k T m v_p=\sqrt{\frac{2kT}{m}} vp=m2kT
由于我们假设分子动力学仿真完成,我们知道各粒子的速度情况,而k和m均为已知数,因此上述式子实际上只有T作为未知数,也就是构成了温度的三个“定义式”,即基于麦克斯韦分布的体系,我们可以通过上述三种方式根据已经仿真出的速率求出当前体系的温度。但是这其中,其实方均根速度更具有实际意义——

温度的动能定义和能均分定理

回顾方均根速率 v 2 ˉ = 3 k T m \bar{v^2}=\frac{3kT}{m} v2ˉ=m3kT,由于速度的平方正比于动能,不难化简成 ϵ ˉ = 3 2 k T \bar{\epsilon}=\frac{3}{2}kT ϵˉ=23kT的形式。这给出了一个非常简洁的定义:

温度与分子热运动的平均运动动能成正比

在很多研究过程中,甚至常常可以将温度和动能混为一谈,彼此代换。因此对于分子动力学当中测量温度,最好还是采用该式,也即:

  1. T = 2 ϵ ˉ 3 k T=\frac{2\bar{\epsilon}}{3k} T=3k2ϵˉ
能均分定理

复习一下能均分定理~

处于温度为T的平衡态的气体中,分子热运动动能平均分配到每一个分子的每一个自由度上,每一个分子的每一个自由度的平均动能都是 1 2 k T \frac{1}{2}kT 21kT

前面的单元子理想气体模型每一个分子具有3个运动自由度,因此是 ϵ ˉ = 3 2 k T \bar{\epsilon}=\frac{3}{2}kT ϵˉ=23kT
能均分当中均分到的自由度仅包括分子内部的自由度:平动自由度、转动自由度、振动自由度(附带一份等大的振动势能)。理想气体是没有分子间相互作用的,因此外部势能等都是不参与均分的。
能均分仅用于平衡态,且是对于大量分子的统计平均。在不同的温度下,可能会因相变冻结或解冻一些自由度,这是仿真和处理结果时需要注意的。

各种热力学量

平衡态的主要热力学量

首先热力学系统中的热力学量分为强度量和广延量,强度量一般包括内能U、体积V、物质的量N。它们首先可以构成一个热力学基本方程: U = U ( S , V , N 1 , N 2 , . . . , N r ) U=U(S,V,N_1,N_2,...,N_r) U=U(S,V,N1,N2,...,Nr)
对这个方程进行一阶和二阶微分,我们可以找到我们最为常用的一批物理量。下面我依次分析列举。

广延量的求取
内能

内能是系统内部所有微观粒子的微观无序运动能以及总的相互作用势能之和,这是一个状态函数

内能的绝对值取决于定义,因此在实际操作中只需要考虑内能的变化量。内能的变化量,由上述定义所知,来源于动能变化量和势能的变化量之和。动能可以直接的通过速度信息求得,而势能总是与我们事先定义好的势能函数形式与我们考虑层次上的粒子位置有关。因此,动能和势能的变化量均是可求的,也就是内能(变化量)可求。

体积

系统的体积来源于边界条件限制,可以但无需通过粒子的坐标求得。这部分在下一篇当中继续展开。

物质的量

物质的量正比于粒子数,也是已知的基本参数了。

强度量的求取
温度# T = ( ∂ U ∂ S ) V , N 1 , N 2 , . . . , N r T=(\frac{\partial U}{\partial S})_{V,N_1,N_2,...,N_r} T=SU)V,N1,N2,...,Nr

温度的计算已经在上一节中详述,详见上文。

压强# p = − ( ∂ U ∂ V ) S , N 1 , N 2 , . . . , N r p=-(\frac{\partial U}{\partial V})_{S,N_1,N_2,...,N_r} p=VU)S,N1,N2,...,Nr

压强在分子动力学仿真中的仿真并不是显然的。作为偏导数的上述定义并不适合用于计算,因此实际情况下可以通过当前实际系统的性质获得压强。当然,恒压条件的粒子系统自然可以直接获得压强。
一般可以采用位力定理,它可以给出计算压强的如下表达式:
p = 1 3 V ( ∑ i m i v i ⋅ v i + ∑ i < j r i j ⋅ f i j ) p=\frac{1}{3V}(\sum_im_iv_i\cdot v_i+\sum_{i<j}r_{ij}\cdot f_{ij}) p=3V1(imivivi+i<jrijfij)
其中 f i j f_{ij} fij是i对j的相互作用力,可以通过已知的势函数结合位置(速度)信息求取,其余所需的部分都是分子动力学仿真的结果,代入即可求得。
位力定理是理论力学(分析力学)中的内容,此处不是重点,后续或有精力时在此补上其更详细的证明和叙述。

化学势# μ k = − ( ∂ U ∂ N k ) S , V , N 1 , . . . , N k − 1 , N k + 1 , . . . , N r \mu_k=-(\frac{\partial U}{\partial N_k})_{S,V,N_1,...,N_{k-1},N_{k+1},...,N_r} μk=NkU)S,V,N1,...,Nk1,Nk+1,...,Nr

使用分子动力学计算化学势相对困难,将需要使用配分函数等方式来计算,需要在下一篇内容结束后才能更方便讨论。

二阶微分量

将广延量继续对强度量也就是一阶微分求偏导,会得到很多物理量,这里面有一些我们熟悉,例如等压或等容热容,更多的是一些不常用的物理量。这些物理量的求取,也需要后续在系综的讨论基础上逐渐展开。

关于非平衡态,输运和其它

分子动力学能求的东西非常多,我会在后续的内容中不断更新,在相关的专题中涉及。以下是传送门:

  • 暂无内容
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值