金融科技背景下可解释人工智能(XAI)方法评估
1. 引言与动机
自动化系统在我们生活的各个方面日益普及。如今,人工智能不仅可用于自动处理求职申请,以快速填补职位空缺、高效找到合适候选人,还在医学成像领域作为决策支持系统,有效评估 MRI 等检查产生的大量数据。在金融领域,金融科技(FinTech)也广泛运用人工智能进行决策,如贷款和保险业务。然而,当前在为人类决策者提供有意义信息方面存在差距。面对海量数据,决策者依赖人工智能评估,但这些评估需要合理的解释。
2. 问题描述与动机
 在金融场景中,自动化决策对个人可能产生重大影响。以信贷审批为例,可说明在该领域使用人工智能预测存在的局限性和问题。为解决透明度不足的问题,信贷审批过程中的人工智能辅助部分依赖深度学习构建的预测模型,该模型利用各种特征判断个人的贷款偿还能力。但此方法存在决策过程不透明的问题,模型依据特定特征进行预测,却不揭示具体案例的决策依据。提供决策过程的解释可提高预测模型的透明度,例如被拒贷的个人可能会问“为什么贷款申请被拒绝”。此外,法律法规也可能要求对自动化决策负责。可解释人工智能(XAI)算法能为决策者(如信贷审批人员)提供支持,弥补透明度差距。本文的研究问题(RQx)和假设(Hx)如下: 
 - RQ1:对于在一个特征上差异不超过 1% 的输入,XAI 方法提供的解释相似度如何? 
 - H1:若输入几乎相同,预计解释仅会有微小变化,这可作为评估 XAI 算法稳定性的评分指标。 
 - RQ2:将选定特征按因子 a 缩放与所得特征重要性值之间是否存在相关性? 
 - H2:对特征进行一定程度的缩放,会与特征重要性的变化相关。 
                      
                            
                        
                            
                            
                          
                          
                            
                  
                订阅专栏 解锁全文
                
            
      
          
                
                
                
                
              
                
                
                
                
                
              
                
                
              
            
                  
					10
					
被折叠的  条评论
		 为什么被折叠?
		 
		 
		
    
  
    
  
            


            