MAP、SRM、ERM与MLE

本文探讨了最大似然估计(MLE)与最大后验概率(MAP)之间的关系,以及结构风险最小化(SRM)的概念。在机器学习和统计学习方法中,当损失函数为对数损失时,经验风险最小化等价于最大似然估计。最大后验概率则引入了先验概率,成为一种正则化的最大似然估计。文章通过实例解释了先验概率的作用,并展示了如何从MLE转换到MAP。
摘要由CSDN通过智能技术生成

最大似然与经验风险最小化

当模型是条件概率分布,损失函数是对数损失函数时,经验风险最小化就等价于极大似然估计

首先给出对数形式的ERM的公式:

min1ni=1nL(yi,p(yixi))

其中 L(yi,f(xi)) 是损失函数,输出预测值为 f(xi) ,n是观察到的样本数。


最大似然的前提是从模型总体随机抽取样本观测值,所有的采样都是独立同分布的。

假设 x1,x2,...,xn 为独立同分布的采样, θ 为模型参数,f为我们使用的模型,我们使用条件概率分布,遵循独立同分布。假设我们需要根据观察数据 x 估计没有观察到的总体参数 θ

f(x1,x2,...,xnθ)=f(x1θ)×f(x2θ)×...×f(xnθ)

此时似然定义为:

L(θx1,x2,...,xn)=P(x1,x2,...,xnθ)=i&
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值