点云配准方法

一、非学习方法

二、学习方法

随着深度学习的发展,基于学习的点云配准方法得到广泛研究和深入发展。基于学习的点云配准方法大量借鉴了非学习的点云配准方法 的思想和深度学习方法在处理其他问题中的思想。

将深度学习用于点云是一个具有挑战性的问题,因为点云是非结构化的,点之间的关系不是明确的,点的分布密度也可能各不相同。

在点云上进行学习的方法分为3类,即基于体素的方法、基于多视图的方法和基于原始数据的方法。

基于体素的方法

基于体素的方法将点云转换为结构化的3D体素结构,并将其与3D卷积核进行卷积,用类似图像深度学习的方法卷积、池化和连接层进行学习(Maturana和Scherer,2015;Meng等,2019;Zhou和Tuzel,2018)。

缺点:尽管基于体素的方法表现出良好的性能,但由于大多数体素中都没有或者只有少量的点,这样的稀疏性会导致很高的无效内存消耗和计算量,从而导致无法将点云进行更加细致的体素划分。

 

基于多视图的方法

基于多视图,将3维非结构化的点云通过在多个方向上的投影转换为2维结构化的图像的集合,然后对其用图像深度学习方法处理并整合(Qi等,2016;Su等,2015;Kanezaki等,2018)。

不同于基于体素的方法,基于多视图的方法可以进行更加细致的划分ÿ

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值