一、非学习方法
二、学习方法
随着深度学习的发展,基于学习的点云配准方法得到广泛研究和深入发展。基于学习的点云配准方法大量借鉴了非学习的点云配准方法 的思想和深度学习方法在处理其他问题中的思想。
将深度学习用于点云是一个具有挑战性的问题,因为点云是非结构化的,点之间的关系不是明确的,点的分布密度也可能各不相同。
在点云上进行学习的方法分为3类,即基于体素的方法、基于多视图的方法和基于原始数据的方法。
基于体素的方法
基于体素的方法将点云转换为结构化的3D体素结构,并将其与3D卷积核进行卷积,用类似图像深度学习的方法卷积、池化和连接层进行学习(Maturana和Scherer,2015;Meng等,2019;Zhou和Tuzel,2018)。
缺点:尽管基于体素的方法表现出良好的性能,但由于大多数体素中都没有或者只有少量的点,这样的稀疏性会导致很高的无效内存消耗和计算量,从而导致无法将点云进行更加细致的体素划分。
基于多视图的方法
基于多视图,将3维非结构化的点云通过在多个方向上的投影转换为2维结构化的图像的集合,然后对其用图像深度学习方法处理并整合(Qi等,2016;Su等,2015;Kanezaki等,2018)。
不同于基于体素的方法,基于多视图的方法可以进行更加细致的划分ÿ