点云配准网络 PCRNet: Point Cloud Registration Network using PointNet Encoding 2019

本文使用PointNet对点云提取全局特征,不需要计算点云之间的一一对应关系,因此能够实现快速的点云配准。

PCRNet根本没有用到局部特征,因此在速度上有优势,精度上会有所妥协。加入了局部特征信息的模型应该会有更高的精度。

PCRNet 的另一特点是其迭代版本鲁棒性很强,可以对类内不同实例进行鲁棒的配准,其他配准方法不行,还是只使用了全局特征的原因。

模型整体结构简单,可以快速上手。

PCRNet

在这里插入图片描述

  1. 输入为template点云和source点云,首先使用一个5层的MLP对输入的点云进行处理,然后经过最大池化层。最大池化层的降采样操作可以使得网络对输入点的顺序保持不变性。
  2. 然后使用PointNet提取点云信息的全局特征,即图中的函数\Phi()Φ()。
  3. 将两个全局特征进行连接,然后使用5层的全连接网路对相对位姿进行预测。
    这里输出的格式是将平移量和旋转量合并在一起同时输出的,即7个数据,前三个是平移量,后面4个经过归一化得到单位四元数。

可以看出,PCRNet相比于其他点云配准方法结构更加简单,由于是非迭代的single-pass结构,其速度也非常快。

如果将模型里面的FC网络换成是传统的LK算法,模型就与PointNetLK非常相似了(都是使用MLP和池化层对点云进行处理,然后进行相对位姿预测)

Iterative PCRNet

由于PCRNet的简单高效,将其反复进行配准就可以得到迭代式的配准模型。
得益于迭代方式更加精确,为了提高迭代的效率,作者将PCRNet中的5层FC改成了3层
在这里插入图片描述

计算最终的相对位姿变换就是将迭代过程中的变换矩阵累乘:
\mathbf{T}=\mathbf{T}(n) \times \mathbf{T}(n-1) \times \cdots \times \mathbf{T}(1)T=T(n)×T(n−1)×⋯×T(1)

##损失函数:
两个网络的损失函数是一样的,使用了Earth Mover’s Distance(搬土距离)。
通过实验发现其效果优于pose loss,以及Frobenius norm。
\operatorname{EMD}\left(\mathbf{P}_{S}^{\mathrm{est}}, \mathbf{P}_{T}\right)=\min _{\psi: \mathbf{P}_{S}^{\mathrm{est}} \rightarrow \mathbf{P}_{T}} \frac{1}{\left|\mathbf{P}_{S}^{\mathrm{est}}\right|} \sum_{x \in \mathbf{P}_{S}^{\mathrm{est}}}\|x-\psi(x)\|_{2}EMD(PSest​,PT​)=ψ:PSest​→PT​min​∣PSest​∣1​x∈PSest​∑​∥x−ψ(x)∥2​
其中P_{S}^{est}PSest​是将source点云根据预测的转移矩阵变换后的点云,理想情况下应当与Template点云P_TPT​重合。

实验评估:ModelNet40

在这里插入图片描述

  • 迭代版本的PCRNet利用对象的特殊性能够产生精确的结果。
  • PCRNet计算速度很快,但在精确度上有点妥协。
  • PointNetLK表现出良好的泛化性,但对于噪音鲁棒性不够.
  • ICP对于大型点云来说对象形状不可知且速度较慢
  • Go-ICP的计算成本很高速度慢。

使用AUC作为评估指标:AUC是对配准成功的一种度量,因此AUC的值越高,网络的性能越好。

实验一 泛化性/特异性

在未见类别上进行测试(泛化性测试):

  • ICP :0.802,
  • iterative PCRNet:0.682
  • PointNetLK :0.998.

在训练数据集上进行测试(特异性测试):

  • ICP :0.862
  • iterative PCRNet:0.972
  • PointNetLK :0.998
  • PCRNet:0.998
    结果说明当与对象的特定信息一起训练时,PCRNet 和迭代PCRNet的精度提升更大(相比ICP)
    PointnetLK相比PCRNet有更好的泛化性,且与ICP相比精度更高。作者认为这是因为PointNetLK只需要学习点云特征表示,而PCRNet需要学习整个配准任务,网络的学习容量限制了性能。

噪声鲁棒性

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

PCRNet的鲁棒性很好

速度

在这里插入图片描述

模型替换实验

作者使用pointNet中的语义分割网络对真实点云数据进行分割,然后拿出其中属于的椅子的点云,使用迭代PCRNet将模型库中的椅子点云与其进行配准,然后把原来的点云替换为模型点云:
在这里插入图片描述

Go-ICP 和ICP的结果差不多所以加入了新的对比方法MIP。
中间两个方法都失败了,只有迭代PCRNet配准成功了
这是因为ICP,Go-ICP和MIP要求模板和源必须是同一对象,并且同一类别的对象之间的任何变化都可能导致配准失败;
而迭代PCRNet对于相同类别模型中的形状变化具有鲁棒性,因此可以产生更好的结果

  • 1
    点赞
  • 11
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值