人工智能
文章平均质量分 90
pengdali
这个作者很懒,什么都没留下…
展开
-
HelloDNN,多层感知机MLP学习笔记
前言 学那个技术第一步都是helloworld,AI也是一样,我们来吧1、从感知机说起这是一个3输入1输出的感知机模型输入输出之间学到一个线性关系 然后一个神经元激活函数 但这类模型无法学习比较复杂的非线性模型,且只能做2元分类2、引入多层感知机神经网络MLP在对感知机进行的改进主要有3点 2.1 隐藏层 主要为了加强表达能力,层数越多自然表达能力高,当然参数也线性增多,原创 2017-12-09 18:00:45 · 2138 阅读 · 0 评论 -
实战 MLP CNN 实践mnist
一、CNN基础知识点1、局部感知 生物视觉系统中的视觉皮层是局部接受信息的, 图像的部分关键像素信息也是有局部联系的。MLP中神经元是全连接,而可以改进成先由局部到全局的一个过程,如图: 如图每个卷积单元与10*10个像素相连,那么参数(1000/10)(1000/10)(10×10)=10^6个参数,减少为全连接的百万分之一2、权值参数共享 简单来说就是一个卷积核的权重参数是相同的或者说原创 2017-12-16 18:35:44 · 1578 阅读 · 0 评论 -
实战LeNet-5 AlexNet ResNet 实践 Cifar-10问题
一、Cifar-10的说明cifar10是一个32*32 的图像10分类问题,一共有60000张图片,我们拿50000张做训练数据,另外拿2000张做测试数据。 为了学习不同网络,这里统一拿这个用作实验材料,关于下载cifar10,或更多说明可以查看官网CIFAR-10二、LeNet5模型 如图所示这个模型就是2个卷积、池化,再连3个全连接 第一个卷积层6个大小为5*5卷积核,第二卷积层为原创 2017-12-30 22:19:32 · 4340 阅读 · 0 评论 -
实战 迁移学习 VGG19、ResNet50、InceptionV3 实践 猫狗大战 问题
一、实践流程1、数据预处理主要是对训练数据进行随机偏移、转动等变换图像处理,这样可以尽可能让训练数据多样化另外处理数据方式采用分批无序读取的形式,避免了数据按目录排序训练 #数据准备 def DataGen(self, dir_path, img_row, img_col, batch_size, is_train): if is_train:原创 2018-01-13 12:52:14 · 26140 阅读 · 49 评论 -
实战端到端深度学习模拟无人驾驶
一、理论知识参考NVIDIA的论文 https://arxiv.org/pdf/1604.07316.pdf这个实验的目的是使用卷积神经网络(CNN)将从前向摄像机得到的原始图像映射成自动驾驶汽车的驾驶命令。这个过程需要先采集数据,原理是这样的:一共有左、中、右3个摄像头,负责采集视频数据。在训练后我们只需要中间的摄像头采集的数据用于驾驶决策,那为什么需要3个采集训练数原创 2018-01-29 00:30:57 · 9085 阅读 · 8 评论 -
实践Q Learning 实现走迷宫
一、环境构建搭建一个简单的迷宫环境,红色位置出发,黑色位置代表失败,黄色位置代表成功,让红色块慢慢通过不断探索学习的方式走到黄色的位置 #初始化迷宫 def _build_maze(self): h = self.MAZE_H*self.UNIT w = self.MAZE_W*self.UNIT #初始化画布 self...原创 2018-02-25 19:12:16 · 9499 阅读 · 6 评论