Informer论文思维导图

Informer

Abatract:指出Transormer问题

高内存占用率

高时间复杂度

长序列预测难

Introduction

课题应用背景

时间序列预测是很多应用领域的重要成分,比如传感器网络检测,能源与智能网格管理系统,经济与财政以及灾难防御分析。

传统模型存在问题

现存模型应对长时间序列预测能力差,如LSTM在超出48时间步长后预测能力变差

Transormer优缺点

优势
相比传统模型,其注意力机制的引入使序列中点到点最大距离最大,有效梯度保留越多,传递更加准确
具有并行性,符合现有GPU框架,速率提高
不足
self-attention高时间复杂度为平方级
编码器解码器堆叠结构造成模型体积大,产生内存瓶颈
与传统RNN相同,解码器使用step-by-step方式解码,解码速度慢

我的改进

提出的ProbSparse self-attention机制去高效的替换self-attention,这实现了O(LlogL)的时间复杂度
针对编码器-解码器堆叠问题,采用蒸馏操作,降低模型空间复杂度
提出了生成式解码器,只需要一个前向步骤就能获得长时间的输出,同时避免了推理阶段的累积错误传播。

Methodology方法理论验证与推导:全是公式

模型搭建

编码器

解码器

Experiment

实验环境

python 3.6,pytorch 1.8.0,Windows 10,i5-6300H CPU ,NVIDIA GeForce 960M 显卡.

数据集

两个真实数据集,两个基准数据集

数据预处理

归一化标准化

实验过程

调整参数:batch-size=8,heads=8,dim=64最优

评价指标

MSE和MAE

实验结果分析

消融实验,对比ARIMA,Prophet,LSTMA,LST-NET发现较其都有提高
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

彭祥.

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值