Waymo数据集下载与使用

本文介绍了如何处理Waymo自动驾驶数据集,包括motion和perception部分,以及如何从Tensorflow格式转换为COCO格式以便于2D目标检测研究。作者分享了下载、处理和转换过程,以及所需的工具和代码链接。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在撰写论文时,接触到一个自动驾驶数据集Waymo Dataset

论文链接为:https://arxiv.org/abs/1912.04838v7

项目链接为:https://github.com/waymo-research/waymo-open-dataset

数据集链接为:https://waymo.com/open

waymo提供了两种数据集,motionperception两种,其中motion是鸟瞰图,官网中有介绍,主要用于轨迹预测之类的任务,perception主要用于目标检测跟踪之类的任务,是第一视角,有相机和雷达信息。

在这里插入图片描述

由于该数据集极为庞大,因此要想使用完整版只能前往官网下载。由于博主研究的是2D目标检测,因此只需要使用v1.1版本即可,该数据集提供了两个下载链接,一个是封装好的tar文件,另一个是单个文件,我们分别下载了两个数据集文件进行解析。

在实验中,并不需要将所有的数据集,因此博主只下载了train_0000.tar文件,该数据集也达到近23G

tar文件展示:

在这里插入图片描述

里面的内容是tensorflow读取格式的文件。

如果觉得23个G下载起来太过费时,也可以选择下载单个文件。

在这里插入图片描述

将数据集下载完毕后,该数据集的内容是无法查看的,因为其使用的是Tensorflow读取格式。

那么接下来便有两条路,一条是将我们的模型中的数据集加载方式改为Tensorflow形式,另一种则是将Tensorflow格式的数据集文件重新解码,转换为我们平时使用的数据集形式,博主果断采用第二种。

由于博主使用的数据集类型是COCO格式,因此可以使用下面的方法将Waymo数据集转换为COCO格式。代码下载地址如下:

https://github.com/shinya7y/WaymoCOCO

在该项目的readme中记录了Linux系统下载Waymo数据集并转换的过程,这里博主由于使用的是Windows系统,因此这里博主就不按照他的要求进行了,只需要下载protbuf依赖包即可。

随后按照下面的格式运行代码即可。

python convert_waymo_to_coco.py 
    --tfrecord_dir ${HOME}/data/waymotfrecord/validation/  #tfrecord的存放文件夹路径
    --work_dir ${HOME}/data/waymococo_f0/  #保存文件夹地址
    --image_dirname val2020  #保存的图片路径
    --image_filename_prefix val  #val
    --label_filename instances_val2020.json #保存的json文件
    --add_waymo_info 
    --frame_index_ones_place 0 #保存的index

之后便将原本tensorflow格式的数据转换为COCO格式了。

推荐,waymo自动驾驶资料大全,包括相关专利资料和报告。 专利资料合集 1用于显示自动驾驶系统内部状态的用户界面 2具有多个光检测和测距设备的车辆(激光雷达) 3用于汽车雷达的2D紧凑型无功波束形成网络 4用于引导,控制和测试自主车辆特征和驾驶员响应的数据处理系统 5基于视觉的交通信号灯检测和分类 6用于确定车辆的姿势数据的系统和方法 7用于确定和动态更新乘客舒适度的路线和驾驶风格的方法和系统 8粘性安全气囊,用于行人保护 9使用印刷波导传输线的开槽波导阵列天线 10剪销失效系统 11对自动驾驶汽车的辅助感知 12LIDAR光学校准系统和方法 13冷凝传感器数据用于传输和处理 14用于显示自动驾驶系统内部状态的用户界面 15测试自动驾驶汽车的预测 16面向车辆的乘客显示 17指定自动驾驶车辆的不可用位置 18控制具有不充分的地图数据的车辆 19用于显示自动驾驶系统内部状态的用户界面 20用于自驾车的集成MIMO和SAR雷达天线架构 21使用车轮方向确定未来的航向 22用于对车辆和其他代理的行为进行建模的自动化系统和方法 23控制具有不充分的地图数据的车辆 24用于汽车雷达的3D紧凑型无功波束形成网络 25后传感器外壳 26控制具有不充分的地图数据的车辆 27自动驾驶汽车的动态路线 28控制具有不充分的地图数据的车辆 29对象边界框估计 30根据所需的驾驶员互动量建议路线 31控制具有不充分的地图数据的车辆 32用于具有多个无线链路的旋转接头的装置和方法 33PCB集成波导终端和负载 34二次冲击安全气囊 35可展开的乘客舱 36通过车轮运动检测车辆运动 37显示屏幕或其部分具有图形用户界面 38用于物体检测的神经网络 39将观察到的车辆轨迹合并为单个代表轨迹的方法 40使用跟踪回路的激光二极管定时反馈 41自动驾驶车辆的交通信号响应 42光电探测器阵列数字前端的混合集成 43镜子组装 44参和脱离自动驾驶 45通过自动驾驶车辆运输到目的地的方法和系统 46具有特别关注区域的宽视角激光雷达 47自动驾驶汽车 48光束分割扩展动态范围图像捕获系统 49美联储为汽车雷达决定开放式波导(DOEWG)天线阵列 50用于介电旋转接头的装置和方法 51自动车门 52自动车门 53检测街道停放的车辆 54多路复用多通道光电探测器 55使用障碍物间隙来测量精确的横向间隙 56通过高光谱传感器表征光学反射特征 57基于乘员存在和位置的自主驾驶行为的适应性 58基于乘员存在和位置的自主驾驶行为的适应性 59报告道路事件数据并其他车辆共享 60显示屏幕或其部分具有图形用户界面 61停止标志检测和响应 62基于特殊用途车辆的存在来修改车辆状态 63印刷电路板布局 64自动驾驶汽车的增强轨迹 65MIMO雷达的正交线性调频 66根据交通状况修改自动驾驶汽车的速度 67显示屏幕或其一部分具有图形用户界面 68使用反向视差分析验证目标对象 69通过主动控制自主车辆来检测传感器劣化 70显示屏幕或其一部分具有图形用户界面 71用于低延迟通信的系统和方法 72用于确定车辆的姿势数据的系统和方法 73基于上下文信息预测对象的轨迹 74显示屏幕或其部分具有图形用户界面 75用于评估自主车辆的感知系统的系统和方法 76定位车辆以提高交叉口的观测质量 77等候乘客时的自主车辆行为 78用于LIDAR光学对准的方法和系统 79使用扭曲区域在级别之间转换的方法和装置 80基于视觉的交通信号灯检测和分类 81使用时空滤波的基于视觉的指示器信号检测 82 用于可旋转LIDAR设备的非接触式电耦合器 83检测并响应尾部 84远程可操纵LIDAR系统 85用于关闭车门的装置和方法 86用于DOEWG天线阵列功率和相位设置的集成镜头 87利用网络中不同交通信号的活动之间的关系来改善交通信号状态估计 88交叉验证自动驾驶车辆的传感器 89基于场景的自动驾驶汽车声音警告 90对自动驾驶汽车的辅助感知 91具有多个光检测和测距设备(LIDAR)的车辆 92碰撞减轻了自动驾驶车辆的制动 93基于多阶段分类的基于实时图像的车辆检测 94控制被动雨刷系统 95第二排车辆优先座位 96智能部署自动驾驶汽车的安全机制 97面向车辆的乘客显示 98基于音频样本的警笛检测方法 99用于雷达的相位编码线性频率调制 100模拟虚拟对象 ………… 资料太多不一一列举了,共169份 报告合集(9份)
### 如何下载Waymo自动驾驶数据集 为了访问并下载Waymo自动驾驶开放数据集,需遵循特定流程以确保顺利获取所需资料[^2]。 #### 访问官方网站 前往Waymo官方提供的链接进入数据集页面。该网站不仅包含了可供下载的数据文件,还提供了有关数据集结构、格式以及使用指南的重要信息。 #### 注册账号 首次使用者需要创建一个账户来完成注册过程。这一步骤对于后续接收邮件通知和技术支持至关重要。 #### 浏览筛选数据 一旦登录成功,在线平台上会展示不同版本的数据集合供浏览。可以根据具体需求选择感兴趣的部分进行深入了解。每份数据都附带详细的描述文档,帮助理解其特性和适用范围。 #### 下载选项 针对不同的网络环境和个人偏好,平台提供了多种下载方式: - **直接HTTP下载**:适合拥有稳定高速互联网连接的用户。 - **Google Cloud Storage (GCS)**:通过谷歌云存储服务加速传输速度,尤其适用于大规模批量下载操作。 - **命令行工具gsutil**:利用此工具可以从终端执行自动化脚本来管理云端对象,简化重复性的下载任务。 ```bash # 安装 gsutil 工具 pip install google-cloud-storage # 使用 gsutil 命令下载指定路径下的文件 gsutil cp -r gs://waymo_open_dataset_v_1_4_3 ./local_directory/ ``` #### 数据集开发工具包 除了原始数据外,Waymo团队也开源了一套配套使用的Python库,用于解析和处理这些复杂而庞大的二进制格式记录。开发者可以通过GitHub仓库找到完整的API说明和支持函数列表,便于快速上手实践项目开发工作。
评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

彭祥.

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值