张量/tensor--详解

概念
在这里插入图片描述
0维张量/标量 标量是一个数字

1维张量/向量 1维张量称为“向量”。

2维张量 2维张量称为矩阵

3维张量 公用数据存储在张量 时间序列数据 股价 文本数据 彩色图片(RGB)
现有的深度学习系统大多都是基于张量代数(tensor algebra)设计的,但张量代数不仅仅用于深度学习。
张量

TensorFlow中的中心数据单位是张量。张量由一组成形为任意数量的数组的原始值组成。张量的等级是其维数。以下是张量的一些例子:

3 # a rank 0 tensor; this is a scalar with shape []
[1. ,2., 3.] # a rank 1 tensor; this is a vector with shape [3]
[[1., 2., 3.], [4., 5., 6.]] # a rank 2 tensor; a matrix with shape [2, 3]
[[[1., 2., 3.]], [[7., 8., 9.]]] # a rank 3 tensor with shape [2, 1, 3]

张量,或tensor,是本文档会经常出现的一个词汇,在此稍作解释。

使用这个词汇的目的是为了表述统一,张量可以看作是向量、矩阵的自然推广,我们用张量来表示广泛的数据类型。

规模最小的张量是0阶张量,即标量,也就是一个数。

当我们把一些数有序的排列起来,就形成了1阶张量,也就是一个向量

如果我们继续把一组向量有序的排列起来,就形成了2阶张量,也就是一个矩阵

把矩阵摞起来,就是3阶张量,我们可以称为一个立方体,具有3个颜色通道的彩色图片就是一个这样的立方体

把立方体摞起来,好吧这次我们真的没有给它起别名了,就叫4阶张量了,不要去试图想像4阶张量是什么样子,它就是个数学上的概念。

张量的阶数有时候也称为维度,或者轴,轴这个词翻译自英文axis。譬如一个矩阵[[1,2],[3,4]],是一个2阶张量,有两个维度或轴,沿着第0个轴(为了与python的计数方式一致,本文档维度和轴从0算起)你看到的是[1,2],[3,4]两个向量,沿着第1个轴你看到的是[1,3],[2,4]两个向量。
要理解“沿着某个轴”是什么意思,不妨试着运行一下下面的代码:

import numpy as np

a = np.array([[1,2],[3,4]])
sum0 = np.sum(a, axis=0)
sum1 = np.sum(a, axis=1)

print a
print sum0
print sum1

深度学习中的tensor
如果说计算是有传统的,那么使用线性代数的数值计算就是其中最重要的一支。像 LINPACK 和 LAPACK 这样的包已经是非常老的了,但是在今天它们任然非常强大。其核心:线性代数由非常简单且常规的运算构成,它们在一维或二维数组(称为向量或矩阵)上进行重复的乘法和加法运算。同时线性代数适用范围异常广泛,从计算机游戏中的图像渲染到精密仪器设计等许多不同的问题都可以解决或近似计算。

关键的线性代数运算:在计算机上使用的最基础的线性代数运算是两个向量的点积(dot product)。这种点积仅仅是两个向量中相关元素的乘积和。一个矩阵和一个向量的积可以被视为该矩阵和向量行(row)的点积,两个矩阵的乘积可以被视为一个矩阵和另一个矩阵的每一列(column)进行的矩阵-向量乘积的和。此外,再配上用一个值对所有元素进行逐一的加法和乘法,就可以构造出所需的线性代数运算机器。

计算机之所以可以极快地求出用线性代数编写的程序值,部分原因是线性代数具有规律性。另一个原因是它们可以大量地被并行处理。完全就潜在性能而言,从早期的 Cray-1到今天的 GPU 计算机,性能增长了超过 30000 倍。当考虑用大量 GPU 处理集群数据时,其潜在的性能,在极小成本下,比曾经世上最快速的计算机大约高出一百万倍。

要想充分利用新的处理器,就要让运算越来越抽象。Cray-1 和它向量化的继承者需要其运行程序能够使用向量运算(如点积)才能发挥出硬件的全部性能。后来的机器要求要就矩阵-向量运算或矩阵-矩阵运算来将算法形式化,从而方可尽可能地发挥硬件的价值。

但是到现在我们没有任何超越矩阵-矩阵运算的办法,换句话说:我们对线性代数的使用已达极限。

但是,完全必要把自己限制在线性代数上。长期以来,人们都知道在数学抽象的海洋中存在着比矩阵还要大的鱼,这其中一个候选就是张量(tensor)。张量是广义相对论重要的数学基础,此外它对于物理学的其它分支来说也具有基础性的地位。那么如同数学的矩阵和向量概念可被简化成我们在计算机中使用的数组一样,我们是否可以将张量也简化和表征成多维数组和一些相关的运算呢?很不幸,事情没有那么简单,这其中的主要原因是不存在一个显而易见且简单的(如在矩阵和向量上类似的)可在张量上进行的一系列运算。

然而,也有好消息。虽然我们不能对张量使用仅几个运算。但是我们可以在张量上写下一套运算的pattern。不过,这还不不够,因为根据这些模式编写的程序不能像它们写的那样被充分高效地执行。另外:那些效率低下但是编写简单的程序可以被自动转换成可非常高效执行的程序。

更赞的是,这种转换可以无需构建一门新编程语言就能实现。只需要一个简单的技巧就可以了,当我们在 TensorFlow 中写下如下代码时:

v1 = tf.constant(3.0)

v2 = tf.constant(4.0)

v3 = tf.add(node1, node2)

系统将建立一个像图 1 中显示的数据结构:
在这里插入图片描述

图 1:上方的代码被转译成一个可被重建的数据结构,而且它会被转成机器可执行的形式。将代码转译成用户可见的数据结构可让我们所编写的程序能被重写从而更高效地执行,或者它也可以计算出一个导数,从而使高级优化器可被使用。

该数据结构不会在上面我们展示的程序中实际执行。因此,TensorFlow 才有机会在我们实际运行它之前,将数据结构重写成更有效的代码。这也许会牵涉到我们想让计算机处理的小型或大型结构。它也可生成对我们使用的计算机 CPU、使用的集群、或任何手边可用的 GPU 设备实际可执行的代码。因此,我们可以编写非常简单但可实现令人意想不到结果的程序。

TensorFlow 和像它一样的系统采用的完全是描述机器学习架构(如深度神经网络)的程序,然后调整那个架构的参数以最小化一些误差值。它们通过创建一个表征我们程序的数据结构,和一个表征相对于我们模型所有参数误差值梯度的数据结构来实现这一点。这个梯度函数的存在使得优化变得更加容易。

但是,虽然你可以使用 TensorFlow 或 Caffe 或任何其它基本上同样工作模式的架构来写程序,不过你写的程序不一定要去优化机器学习函数。如果你写的程序使用了由你选择的package提供的张量标注,那它就可以优化所有类型的程序。自动微分和最先进的优化器以及对高效 GPU 代码的编译对你仍然有利。

例子:图二给出了一个家庭能耗的简单模型。
在这里插入图片描述

图 二:该图显示了一间房子的日常能耗情况(圆圈),横轴代表了温度(华氏度)。能耗的一个分段线性模型叠加在了能耗具体数据上。模型的参数按理来说会形成一个矩阵,但是当我们要处理上百万个模型时,我们便可以用到张量。

该图显示了一间房子的能耗使用情况,并对此进行建模。需要写代码来分别对数百万间房子的能耗情况进行建模。如果使用 TensorFlow,我们可以立即为所有这些房子建立模型,并且我们可以使用比之前得到这个模型更有效的优化器。就可以立即对数百万个房间的模型进行优化,而且其效率比之前我们原始的程序要高得多。理论上我们可以手动优化代码,并且可以有人工推导的导数函数。不过完成这项工作所需要的时间,以及更重要的,调试花费的时间会让笔者无法在有限时间里建立这个模型。

这个例子说明了一个基于张量的计算系统如 TensorFlow(或 Caffe 或 Theano 或 MXNet 等等)是可以被用于和深度学习非常不同的优化问题的。

  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

perfect Yang

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值