机器学习之决策树

决策树是一个递归的过程,每层使用不同判断标准。

  • 信息增益
  • 信息增益率
  • GINI系数
  • 剪枝策略
  • 举例
    在这里插入图片描述
1.熵

熵表示随机变量不确定性的度量(即内部混乱程度,分布越混乱熵值越大。)

E ( x ) = − ∑ ( p ) ∗ l o g ( p ) i = 1 , 2 , 3...... E(x) = -\sum (p)*log(p) i = 1,2,3...... E(x)=(p)log(p)i=1,2,3......
例如A [1 1 1 1 2 2 2 2] B[1 2 3 4 5 6 7 8] C[1 1 1 1 1 1 1 1]
A的集熵值较低,B熵值更大 C最小因为C的熵值为0(元素概率为1)

2.信息增益 ID3

熵值增加或减少的值:
在这里插入图片描述

3.信息增益率 ID3

考虑自身的熵值。
G a i n ( D , a ) ′ = G a i n ( D , a ) / I V Gain(D, a)' = Gain(D, a) / IV Gain(D,a)=Gain(D,a)/IV
IV即自身的熵值。

4.GINI系数

G a i n ( D ) = 1 − ∑ k = 1 K p 2 Gain(D) = 1 - \sum_{k = 1}^K p^2 Gain(D)=1k=1Kp2
和熵的衡量标准基本一致,只是计算方式不同

5.剪枝策略(控制节点个数等等)

预剪枝策略:边建立决策树边剪枝
后剪枝:建立完成之后再剪枝

6.例子

在这里插入图片描述
决策树之前,根节点包含所有样本。根节点的信息熵为:
E n t ( D ) = − ( ( 8 / 17 ) ∗ l o g   2 8 / 17 + ( 9 / 17 ) ∗ l o g   2 9 / 17 ) = 0.998 Ent(D) = -((8/17) * log~2^{8/17} + (9/17) * log~2^{9/17})=0.998 Ent(D)=((8/17)log 28/17+(9/17)log 29/17)=0.998
如果按照色泽划分:
D1:青绿
D2:乌黑
D3:浅白
同样算出三个熵值,
E ( D 1 ) = − ( ( 3 / 6 ) ∗ l o g   2 3 / 6 + ( 3 / 6 ) ∗ l o g   2 3 / 6 ) = 1 E(D1) = -((3/6) * log~2^{3/6} + (3/6) * log~2^{3/6})=1 E(D1)=((3/6)log 23/6+(3/6)log 23/6)=1

信息增益
G a i n ( D , 色 泽 ) = E n t ( D ) − ( ( 6 / 17 ) ∗ 1 + ( 6 / 17 ) ∗ 0.918 + ( 5 / 17 ) ∗ 0.722 = 0.109 Gain(D, 色泽) = Ent(D) - ((6/17) * 1 + (6/17)*0.918 + (5/17)*0.722 = 0.109 Gain(D,)=Ent(D)((6/17)1+(6/17)0.918+(5/17)0.722=0.109
同理可以计算出按照其他属性的值:
例如*Gain(D, 根蒂) = 0.143 Gain(D, 纹理) = 0.143 *…
得到纹理增益最大。对纹理进一步子节点进一步划分。

信息增益率 例如通过上述步骤得到触感属性进行划分信息增益0.006
信息增益率 = 0.006/0.874
0.874即公式中的IV
I V = − ( ( 12 / 17 ) ∗ l o g   2 12 / 17 + ( 5 / 17 ) ∗ l o g   2 5 / 17 ) IV = -((12/17) * log~2^{12/17} + (5/17) * log~2^{5/17}) IV=((12/17)log 212/17+(5/17)log 25/17)

使用skLearn实现基本决策树
import matplotlib.pyplot as plt
import pandas as pd
%matplotlib inline

#在线数据 联网下载
from sklearn.datasets.california_housing import fetch_california_housing
housing = fetch_california_housing()

from sklearn.model_selection import train_test_split
data_train, data_test, target_train, target_test = train_test_split(housing.data, housing.target, test_size = 0.1, random_state = 42)
decisionTree = tree.DecisionTreeRegressor(random_state = 42)
#housing.data[:, [0, 1]] 输入样本x  housing.target样本标签
decisionTree.fit(data_train, target_train)
decisionTree.score(data_test, target_test)

如果想更换不同的参数得到最高的效果,可以使用GridSearchCV


from sklearn.grid_search import GridSearchCV
# criterion='mse', max_depth=None, max_features=None,
#            max_leaf_nodes=None, min_impurity_decrease=0.0,
#            min_impurity_split=None, min_samples_leaf=1,
#            min_samples_split=3, min_weight_fraction_leaf=0.0,
#            presort=False, random_state=None, splitter='best'
tree_param_grid = { 'min_samples_split': list((3,6,9)),'max_depth':list((2,4,6,8,16, 32))}
grid = GridSearchCV(tree.DecisionTreeRegressor(),param_grid=tree_param_grid, cv=5)
grid.fit(data_train, target_train)
grid.grid_scores_, grid.best_params_, grid.best_score_

输出得到最好结果的组合:

([mean: 0.44506, std: 0.00625, params: {'max_depth': 2, 'min_samples_split': 3},
  mean: 0.44506, std: 0.00625, params: {'max_depth': 2, 'min_samples_split': 6},
  mean: 0.44506, std: 0.00625, params: {'max_depth': 2, 'min_samples_split': 9},
  mean: 0.57607, std: 0.00765, params: {'max_depth': 4, 'min_samples_split': 3},
  mean: 0.57607, std: 0.00765, params: {'max_depth': 4, 'min_samples_split': 6},
  mean: 0.57607, std: 0.00765, params: {'max_depth': 4, 'min_samples_split': 9},
  mean: 0.64758, std: 0.00481, params: {'max_depth': 6, 'min_samples_split': 3},
  mean: 0.64659, std: 0.00582, params: {'max_depth': 6, 'min_samples_split': 6},
  mean: 0.64700, std: 0.00511, params: {'max_depth': 6, 'min_samples_split': 9},
  mean: 0.68846, std: 0.00426, params: {'max_depth': 8, 'min_samples_split': 3},
  mean: 0.68738, std: 0.00471, params: {'max_depth': 8, 'min_samples_split': 6},
  mean: 0.68722, std: 0.00515, params: {'max_depth': 8, 'min_samples_split': 9},
  mean: 0.62133, std: 0.00743, params: {'max_depth': 16, 'min_samples_split': 3},
  mean: 0.63677, std: 0.00863, params: {'max_depth': 16, 'min_samples_split': 6},
  mean: 0.65077, std: 0.00892, params: {'max_depth': 16, 'min_samples_split': 9},
  mean: 0.60382, std: 0.00944, params: {'max_depth': 32, 'min_samples_split': 3},
  mean: 0.62400, std: 0.01184, params: {'max_depth': 32, 'min_samples_split': 6},
  mean: 0.64117, std: 0.00866, params: {'max_depth': 32, 'min_samples_split': 9}],
 {'max_depth': 8, 'min_samples_split': 3},
 0.6884636618151855)

完整代码:完整代码

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
1 目标检测的定义 目标检测(Object Detection)的任务是找出图像中所有感兴趣的目标(物体),确定它们的类别和位置,是计算机视觉领域的核心问题之一。由于各类物体有不同的外观、形状和姿态,加上成像时光照、遮挡等因素的干扰,目标检测一直是计算机视觉领域最具有挑战性的问题。 目标检测任务可分为两个关键的子任务,目标定位和目标分类。首先检测图像中目标的位置(目标定位),然后给出每个目标的具体类别(目标分类)。输出结果是一个边界框(称为Bounding-box,一般形式为(x1,y1,x2,y2),表示框的左上角坐标和右下角坐标),一个置信度分数(Confidence Score),表示边界框中是否包含检测对象的概率和各个类别的概率(首先得到类别概率,经过Softmax可得到类别标签)。 1.1 Two stage方法 目前主流的基于深度学习的目标检测算法主要分为两类:Two stage和One stage。Two stage方法将目标检测过程分为两个阶段。第一个阶段是 Region Proposal 生成阶段,主要用于生成潜在的目标候选框(Bounding-box proposals)。这个阶段通常使用卷积神经网络(CNN)从输入图像中提取特征,然后通过一些技巧(如选择性搜索)来生成候选框。第二个阶段是分类和位置精修阶段,将第一个阶段生成的候选框输入到另一个 CNN 中进行分类,并根据分类结果对候选框的位置进行微调。Two stage 方法的优点是准确度较高,缺点是速度相对较慢。 常见Tow stage目标检测算法有:R-CNN系列、SPPNet等。 1.2 One stage方法 One stage方法直接利用模型提取特征值,并利用这些特征值进行目标的分类和定位,不需要生成Region Proposal。这种方法的优点是速度快,因为省略了Region Proposal生成的过程。One stage方法的缺点是准确度相对较低,因为它没有对潜在的目标进行预先筛选。 常见的One stage目标检测算法有:YOLO系列、SSD系列和RetinaNet等。 2 常见名词解释 2.1 NMS(Non-Maximum Suppression) 目标检测模型一般会给出目标的多个预测边界框,对成百上千的预测边界框都进行调整肯定是不可行的,需要对这些结果先进行一个大体的挑选。NMS称为非极大值抑制,作用是从众多预测边界框中挑选出最具代表性的结果,这样可以加快算法效率,其主要流程如下: 设定一个置信度分数阈值,将置信度分数小于阈值的直接过滤掉 将剩下框的置信度分数从大到小排序,选中值最大的框 遍历其余的框,如果和当前框的重叠面积(IOU)大于设定的阈值(一般为0.7),就将框删除(超过设定阈值,认为两个框的里面的物体属于同一个类别) 从未处理的框中继续选一个置信度分数最大的,重复上述过程,直至所有框处理完毕 2.2 IoU(Intersection over Union) 定义了两个边界框的重叠度,当预测边界框和真实边界框差异很小时,或重叠度很大时,表示模型产生的预测边界框很准确。边界框A、B的IOU计算公式为: 2.3 mAP(mean Average Precision) mAP即均值平均精度,是评估目标检测模型效果的最重要指标,这个值介于0到1之间,且越大越好。mAP是AP(Average Precision)的平均值,那么首先需要了解AP的概念。想要了解AP的概念,还要首先了解目标检测中Precision和Recall的概念。 首先我们设置置信度阈值(Confidence Threshold)和IoU阈值(一般设置为0.5,也会衡量0.75以及0.9的mAP值): 当一个预测边界框被认为是True Positive(TP)时,需要同时满足下面三个条件: Confidence Score > Confidence Threshold 预测类别匹配真实值(Ground truth)的类别 预测边界框的IoU大于设定的IoU阈值 不满足条件2或条件3,则认为是False Positive(FP)。当对应同一个真值有多个预测结果时,只有最高置信度分数的预测结果被认为是True Positive,其余被认为是False Positive。 Precision和Recall的概念如下图所示: Precision表示TP与预测边界框数量的比值 Recall表示TP与真实边界框数量的比值 改变不同的置信度阈值,可以获得多组Precision和Recall,Recall放X轴,Precision放Y轴,可以画出一个Precision-Recall曲线,简称P-R
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值