目录
分别介绍了:一阶系统的时域分析,二阶系统的时域分析,三阶系统的时域分析
从零上升至第一次到达稳态值所需的时间,是系统响应速度的一种度量。tr 越小,响应越快。编辑(2) 峰值时间tp:
响应超过稳态值,到达第一个峰值所需的时间。编辑(3) 超调量Mp:
例3-2 已知单位负反馈系统的单位阶跃响应曲线如图所示,试求系统的开环传递函数。编辑编辑
分别介绍了:一阶系统的时域分析,二阶系统的时域分析,三阶系统的时域分析
一阶系统的时域分析
凡是可用一阶微分方程描述的系统,称为一阶系统。
T=RC,时间常数。
其典型传递函数及结构图为:
1.单位阶跃响应
当输入信号r(t)=1(t)时,系统的响应c(t)称作其单位阶跃响应。
响应曲线在[0, ∞ ) 的时间区间中始终不会超过其稳态值,把这样的响应称为非周期响应。
无振荡
一阶系统响应具备两个重要的特点:
①可以用时间常数T去度量系统输出量的数值。
②响应曲线的初始斜率等于1/T。
一阶系统的瞬态响应指标调整时间ts
定义:︱c(ts) -1 ︱= D ( D取5%或2%)
T反映了系统的惯性。
T越小惯性越小,响应快!
T越大,惯性越大,响应慢。
2.单位斜坡响应
稳态响应是一个与输入斜坡函数斜率相同但在时间上迟后了一个时间常数T的斜坡函数。
表明过渡过程结束后,其稳态输出与单位斜坡输入之间,在位置上仍有误差,一般叫做跟踪误差。
比较阶跃响应曲线和斜坡响应曲线:
在阶跃响应中,输出量与输入量之间的位置误差随时间而减小,最终趋于0,而在初始状态下,位置误差最大,响应曲线的斜率也最大;无差跟踪
在斜坡响应中,输出量与输入量之间的位置误差随时间而增大,最终趋于常值T,在初始状态下,位置误差和响应曲线的斜率均等于0。有差跟踪。
3.单位脉冲响应 [R(s)=1]
它恰是系统的闭环传函,这时输出称为脉冲(冲激)响应函数,以h(t)标志。
求系统闭环传函提供了实验方法,以单位脉冲输入信号作用于系统,测定出系统的单位脉冲响应,可以得到闭环传函
4.线性定常系统的重要性质
1.当系统输入信号为原来输入信号的导数时,这时系统的输出则为原来输出的导数。
2.在零初始条件下,当系统输入信号为原来输入信号时间的积分时,系统的输出则为原来输出对时间的积分,积分常数由零初始条件决定。
5.单位抛物线响应
随t趋于无穷大,e趋向于无穷大,无法跟踪
6.总结




7.例题
二阶线性系统的时域分析
二阶系统的动态性能指标
1. 欠阻尼
(1) 上升时间tr :
从零上升至第一次到达稳态值所需的时间,是系统响应速度的一种度量。tr 越小,响应越快。
(2) 峰值时间tp:
响应超过稳态值,到达第一个峰值所需的时间。
(3) 超调量Mp:
响应曲线偏离阶跃曲线最大值,用百分比表示。
(4) 调节时间ts :
响应曲线衰减到与稳态值之差不超过5%所需要的时间。工程上,当0.1 < ξ < 0.9 时,通常用下列二式近似计算调节时间。
总结:
2. 过阻尼
由于响应缓慢,一般不采取过阻尼系统。
例3-1 单位负反馈随动系统如图所示
(1) 确定系统特征参数与实际参数的关系 。
(2) 若K = 16(rad/s)、T = 0.25(s),试计算系统的动态性能指标。
解: (1) 系统的闭环传递函数为
例3-2 已知单位负反馈系统的单位阶跃响应曲线如图所示,试求系统的开环传递函数。

高阶线性系统时域分析
G(s),H(s) 一般是复变量s 的多项式之比,故上式可记为
根据能量的有限性,分子多项式的阶次m不高于分母多项式的阶次n。对上式进行因式分解,将其表示为零、极点形式:
式中0 < ξ k <1 。假设系统有m个实数零点;n个极点(其中有q 个实数极点和r 对共轭复数极点,q+r=n )。令D(s)=0可以得到闭环特征方程,其根称为系统闭环特征根,或闭环极点。
当输入为单位阶跃信号时,系统单位阶跃响应的拉氏变换表示为:
将上式进行部分分式变换,并设全部初始条件为零,再取拉氏反变换(可以查表得到),得到系统单位阶跃响应的时间表达式:
单位阶跃响应C(t)由三项组成,上式表明,如果系统的所有闭环极点都具有负实部,系统时间域响应的各瞬态分量都将随时间的增长而趋近于零。高阶系统的稳定性分析及稳态误差的计算将在本章后面的小节中进行介绍。根据C(t)去分析高阶系统的动态性能指标是比较复杂的,一般工程上采用闭环主导极点的概念降阶来近似分析。
3.4.2 闭环主导极点
1)高阶系统瞬态响应各分量的衰减快慢由 -pi ,-ξkwk决定,也即闭环极点负实部的绝对值越大,相应的分量衰减越快。
2)各分量所对应的系数由系统的零极点分布决定。
3)系统的零极点共同决定了系统瞬态响应曲线的形状。
4)闭环主导极点:对系统瞬态响应起主导作用的极点.
条件:
1 距离s平面虚轴较近,且周围没有其它的闭环极点和零点;对应的瞬态分量衰减缓慢,起主要作用。
不会构成闭环偶极子,产生零极点相消现象。 2 其实部的绝对值比其它极点的 小5倍以上。
应用闭环主导极点的概念,可以把一些高阶系统近似为一阶或二阶系统,以实现对高阶系统动态性能的近似评估。
一般情况,高阶系统具有振荡性,所以主导极点常常是一对共轭复数极点。找到了一对共轭复数极点,高阶系统的动态性能就可以应用二阶系统的性能指标来近似估计。
自动控制原理(胡寿松)第六版中的例3-7就是一个利用闭环主导极点的概念,将一个四阶系统近似为一个二阶系统,那么,就可以利用二阶系统关于动态性能指标求取的方法来近似分析该四阶控制系统的动态性能指标。
资料仅供学习使用
如有错误欢迎留言交流
上理考研周导师的其他专栏:
上理考研周导师了解更多