机器学习之协方差和奇异值分解实现

本文通过一个数据集案例,详细介绍了机器学习中的协方差计算和奇异值分解。协方差用于衡量变量间的相互变化趋势,奇异值分解则在矩阵分析中扮演重要角色,常用于矩阵近似和主成分分析(PCA)。文中还给出了具体的代码示例。
摘要由CSDN通过智能技术生成

案例描述

要求:有以下数据集(二维数组)data,
[[3, 4, 1, 6, 4],
[2, 3, 5, 4, 0],
[3, 3, 1, 0, 0],
[5, 5, 6, 2, 2],
[0, 2, 3, 3, 3],
[0, 0, 0, 6, 6]]

对其svd分解,并打印输出分解后的结果

案例分析

协方差

在pca降维算法中,我们要计算样本数据的协方差。
协方差表示的是两个变量的总体的误差,这与只表示一个变量误差的方差不同。 如果两个变量的变化趋势一致,也就是说如果其中一个大于自身的期望值,另外一个也大于自身的期望值,那么两个变量之间的协方差就是正值。 如果两个变量的变化趋势相反,即其中一个大于自身的期望值,另外一个却小于自身的期望值,那么两个变量之间的协方差就是负值。

奇异值分解

在矩阵M的奇异值分解中
· U的列(columns)组成一套对M的正交"输入"或"分析"的基向量。这些向量是MM的特征向量。
· V的列(columns)组成一套对M的正交"输出"的基向量。这些向量是M
M的特征向量。
· Σ对角线上的元素是奇异值,可视为是在输入与输出间进行的标量的"膨胀控制"。这些是MM及MM的奇异值,并与U和V的列向量相对应。

矩阵近似值

奇异值分解在统计中的主要应用为主成分分析(PCA),一种数据分析方法,用来找出大量数据中所隐含的“模式”,它可以用在模式识别,数据压缩等方面。PCA算法的作用是把数据集映射到低维空间中去。 数据集的特征值(在SVD中用奇异值表征)按照重要性排列,降维的过程就是舍弃不重要的特征向量的过程,而剩下的特征向量组成的空间即为降维后的空间。

代码如下

import numpy as n
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值