深度学习学习笔记——激活函数

激活函数

sigmoid函数:缺点:1、导数在0到0.25之间,反向传播更新参数时容易发生梯度消失。2、非0均值,反向传播更新参数时容易陷入Z更新,收敛过慢。3、幂函数计算,速度过慢。
tanh函数:优点:0均值,收敛快于sigmoid函数。缺点:容易发生梯度消失和幂函数计算过慢。
relu函数:优点:1、正区间内导数趋于无穷大,避免梯度消失。2、收敛速度远快于sigmoid函数和tanh函数。3、不是幂数计算,运算速度快。
缺点:非0均值,收敛较慢。容易发生dead relu.
激活函数小实验:Dynamic_ReLU、Mish
reLu
leakyrelu
sigmoid
tanh
mish

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值