迭代函数
对于方程 f(x)=0,f(x)=0,
若在 x∗x∗ 点满足 f(x∗)=0,f(x∗)=0, 则 x∗=F(x∗),x∗=F(x∗), 反之亦然,则称 F(x)F(x) 为迭代函数。
牛顿迭代法
设 f(x)f(x) 在含有 x∗x∗ 的某个区间 [a,b][a,b] 中有二阶连续导数,且对于任意一个 x∈[a,b]x∈[a,b] 都有 f′(x)≠0,f′(x)≠0, 做出 f(x)f(x) 在任意一点 x0∈[a,b]x0∈[a,b] 处的 Taylor 公式,由于 x∗x∗ 是方程 f(x)=0f(x)=0 的解,则
f(x∗)=f(x0)+f′(x0)(x∗−x0)+12f″(x0+θ(x∗−x0))(x∗−x0)2=0f(x∗)=f(x0)+f′(x0)(x∗−x0)+12f″(x0+θ(x∗−x0))(x∗−x0)2=0
⇒f(x0)f′(x0)+x∗−x0+12f″(x0+θ(x∗−x0))f′(x0)(x∗−x0)2=0⇒f(x0)f′(x0)+x∗−x0+12f″(x0+θ(x∗−x0))f′(x0)(x∗−x0)2=0
⇒x∗=x0−f(x0)f′(x0)−12f″(x0+θ(x∗−x0))f′(x0)(x∗−x0)2⇒x∗=x0−f(x0)f′(x0)−12f″(x0+θ(x∗−x0))f′(x0)(x∗−x0)2
即 ∀x∈[a,b],x∗=x−f(x)f′(x)−12f″(x+θ(x∗−x))f′(x)(x∗−x)2∀x∈[a,b],x∗=x−f(x)f′(x)−12f″(x+θ(x∗−x))f′(x)(x∗−x)2
当 x→x∗x→x∗ 时,上式的最后一项是趋近于零的,因此有
limx→x∗[x−f(x)f′(x)]=x∗−f(x∗)f′(x∗)=x∗limx→x∗[x−f(x)f′(x)]=x∗−f(x∗)f′(x∗)=x∗
这样,
F(x)=x−f(x)f′(x)F(x)=x−f(x)f′(x) 就是一个满足要求的迭代函数,由此得到迭代公式
性质
- 若 {xn}{xn} 收敛,则 limn→∞xn=x∗limn→∞xn=x∗ 这是因为:
设limn→∞xn=x,limn→∞xn=x, 则:
x=limn→∞xn+1=limn→∞[xn−f(xn)f′(xn)]=x−f(x)f′(x)x=limn→∞xn+1=limn→∞[xn−f(xn)f′(xn)]=x−f(x)f′(x)
⇒f(x)=0⇒x=x∗⇒f(x)=0⇒x=x∗ - 由于 x∗=xn−f(xn)f′(xn)−12f″(xn+θ(x∗−xn))f′(xn)(x∗−xn)2,x∗=xn−f(xn)f′(xn)−12f″(xn+θ(x∗−xn))f′(xn)(x∗−xn)2, 因此若 {xn}{xn} 收敛,则
x∗−xn+1=x∗−[xn−f(xn)f′(xn)]=−12f″(xn+θ(x∗−xn))f′(xn)(x∗−xn)2x∗−xn+1=x∗−[xn−f(xn)f′(xn)]=−12f″(xn+θ(x∗−xn))f′(xn)(x∗−xn)2
⇒x∗−xn+1(x∗−xn)2=−12f″(xn+θ(x∗−xn))f′(xn)⇒x∗−xn+1(x∗−xn)2=−12f″(xn+θ(x∗−xn))f′(xn)
⇒limn→∞∣∣∣x∗−xn+1(x∗−xn)2∣∣∣=12∣∣∣f″(x∗)f′(x∗)∣∣∣=C⇒limn→∞|x∗−xn+1(x∗−xn)2|=12|f″(x∗)f′(x∗)|=C
因此我们称,牛顿法是一个二次收敛的迭代法。
牛顿迭代法是一种求解方程 f(x)=0 的方法,要求 f(x) 在目标解 x* 的区间内有二阶连续导数。迭代公式为 x_n+1 = x_n - f(x_n)/f'(x_n)。如果迭代序列 {x_n} 收敛,则极限 x_n 会趋向于方程的解 x*,且牛顿法具有二次收敛的性质。
2824

被折叠的 条评论
为什么被折叠?



