牛顿迭代法

牛顿迭代法是一种求解方程 f(x)=0 的方法,要求 f(x) 在目标解 x* 的区间内有二阶连续导数。迭代公式为 x_n+1 = x_n - f(x_n)/f'(x_n)。如果迭代序列 {x_n} 收敛,则极限 x_n 会趋向于方程的解 x*,且牛顿法具有二次收敛的性质。

迭代函数

对于方程 f(x)=0,f(x)=0,
若在 xx∗ 点满足 f(x)=0,f(x∗)=0,x=F(x),x∗=F(x∗), 反之亦然,则称 F(x)F(x)迭代函数

牛顿迭代法

f(x)f(x) 在含有 xx∗ 的某个区间 [a,b][a,b] 中有二阶连续导数,且对于任意一个 x[a,b]x∈[a,b] 都有 f(x)0,f′(x)≠0, 做出 f(x)f(x) 在任意一点 x0[a,b]x0∈[a,b] 处的 Taylor 公式,由于 xx∗ 是方程 f(x)=0f(x)=0 的解,则
f(x)=f(x0)+f(x0)(xx0)+12f(x0+θ(xx0))(xx0)2=0f(x∗)=f(x0)+f′(x0)(x∗−x0)+12f″(x0+θ(x∗−x0))(x∗−x0)2=0
f(x0)f(x0)+xx0+12f(x0+θ(xx0))f(x0)(xx0)2=0⇒f(x0)f′(x0)+x∗−x0+12f″(x0+θ(x∗−x0))f′(x0)(x∗−x0)2=0
x=x0f(x0)f(x0)12f(x0+θ(xx0))f(x0)(xx0)2⇒x∗=x0−f(x0)f′(x0)−12f″(x0+θ(x∗−x0))f′(x0)(x∗−x0)2

x[a,b],x=xf(x)f(x)12f(x+θ(xx))f(x)(xx)2∀x∈[a,b],x∗=x−f(x)f′(x)−12f″(x+θ(x∗−x))f′(x)(x∗−x)2
xxx→x∗ 时,上式的最后一项是趋近于零的,因此有
limxx[xf(x)f(x)]=xf(x)f(x)=xlimx→x∗[x−f(x)f′(x)]=x∗−f(x∗)f′(x∗)=x∗
这样,
F(x)=xf(x)f(x)F(x)=x−f(x)f′(x) 就是一个满足要求的迭代函数,由此得到迭代公式

xn+1=xnf(xn)f(xn)xn+1=xn−f(xn)f′(xn)

性质

  1. {xn}{xn} 收敛,则 limnxn=xlimn→∞xn=x∗ 这是因为:
    limnxn=x,limn→∞xn=x, 则:
    x=limnxn+1=limn[xnf(xn)f(xn)]=xf(x)f(x)x=limn→∞xn+1=limn→∞[xn−f(xn)f′(xn)]=x−f(x)f′(x)
    f(x)=0x=x⇒f(x)=0⇒x=x∗
  2. 由于 x=xnf(xn)f(xn)12f(xn+θ(xxn))f(xn)(xxn)2,x∗=xn−f(xn)f′(xn)−12f″(xn+θ(x∗−xn))f′(xn)(x∗−xn)2, 因此若 {xn}{xn} 收敛,则
    xxn+1=x[xnf(xn)f(xn)]=12f(xn+θ(xxn))f(xn)(xxn)2x∗−xn+1=x∗−[xn−f(xn)f′(xn)]=−12f″(xn+θ(x∗−xn))f′(xn)(x∗−xn)2
    xxn+1(xxn)2=12f(xn+θ(xxn))f(xn)⇒x∗−xn+1(x∗−xn)2=−12f″(xn+θ(x∗−xn))f′(xn)
    limnxxn+1(xxn)2=12f(x)f(x)=C⇒limn→∞|x∗−xn+1(x∗−xn)2|=12|f″(x∗)f′(x∗)|=C
    因此我们称,牛顿法是一个二次收敛的迭代法。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值