最优化学习笔记(六)——牛顿法性质分析

一、牛顿法存在的问题

    在单变量的情况下,如果函数的二阶导数 f′′<0 ,牛顿法就无法收敛到极小点。类似的,在多变量的情况下,目标函数的hessian矩阵 F(x(k)) 非正定,牛顿法的搜索方向并不一定是目标函数值的下降方向。甚至在某些情况下 F(x(k))>0 , 牛顿法也不具有下降特性。比如,当初始点远离目标函数极小值点时,就有可能出现这种情况。
    牛顿法虽然有上述缺陷,但是如果初始点离极小值点比较近,牛顿法将表现出相当好的收敛特性。

二、两个定理

    首先选定目标函数为二次型函数 f ,牛顿法只需一次迭代就可以从任意点收敛到极小点。令目标函数如下:

f(x)=12xTQxxTb

它的梯度和hessian矩阵分别是:

g(x)=f(x)=QxbF(x)=Q

f(x)=0 时,可求得 f 的极小值点x,且 x=Q1b
利用牛顿法迭代公式可得:
x(1)=x(0)F(x(0))1g(x(0))=x(0)Q1[Qx(0)b]=Q1b=x

下边直接给出定理1:
定理1 函数 f 三阶连续可微,点xRn满足 f(x)=0 , 且 F(x) 可逆,那么对于所有与 x ,足够接近的 x(0) , 牛顿法能够正常运行,且至少以阶数2的收敛率收敛到 x

    上述定理证明略过。上述定理说明如果初始点离极小值点比较近,牛顿法将表现出相当好的收敛特性。否则,可能导致hessian矩阵为奇异矩阵,方法失效。

先给出定理2,然后再解决上述问题。
定理2 { x(k) }是为利用牛顿法求解目标函数 f(x) 极小点时得到的迭代点序列,如果 F(x(k))>0 g(x(k))=f(x(k))0 ,那么从点 x(k) 到点 x(k+1) 的搜索方向

d(k)=F(x(k))1g(x(k))=x(k+1)x(k)

是一个下降方向,即存在一个 a¯>0 ,使得对于所有 α(0,a¯) , 都有
f(x(k)+αd(k))<f(x(k))

成立。

三、牛顿法的修正

    根据定理2, 可以对牛顿法的修正如下:

x(k+1)=x(k)αkF(x(k))1g(x(k))

其中,
αk=argminα0f(x(k)αF(x(k))1g(x(k)))

也就是说,每一次的迭代都在方向 F(x(k))1g(x(k))) 上开展一次一维搜索,由此确定每次搜索的步长。修正的牛顿法具有下降特性,当 g(x(k))0 时,有:
f(x(k+1))<f(x(k))

四、修正后存在的问题

    当目标函数维数比较大时,计算hessian矩阵需要计算量比较大,况且还要求解线性方程组 F(x(k))d(k)=g(x(k)) ,这个问题后续继续讨论。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值