对于一般的周期信号可以用一系列(有限个或者无穷多)正弦波的叠加来表示。
这些正弦波的频率都是某一个特定频率的倍数如5hz、2*5hz、3*5hz……(5hz叫基频),这是傅立叶级数的思想,所以说周期信号的频率是离散的。
而且,周期信号有一个特点:信号的周期越长,信号的基频越小。( 非周期信号可以看作周期无穷大的周期信号,那么它的基频就是无穷小,这样它的频率组成就变成了连续的了。)
求这个连续频率的谱线的过程就是傅立叶变换。包括以下几种变换:
DTFT(时间离散,频率连续),针对连续的信号和频谱。
DFT(时间和频率都离散),针对离散的信号和频谱。
FFT(DFT的优化算法,计算量减少)
在实际应用中,DTFT 提供了理论上的频域理解,而 DFT 则为实际信号处理提供了具体的实现工具
离散时间傅里叶变换(DTFT,Discrete-Time Fourier Transform):
-
无限长信号:DTFT 是对无限长离散时间信号进行频域分析的工具。它假设信号在时间上是无限的,适用于处理理论上的无限长信号。
-
连续频率:DTFT 的结果是一个连续的频谱函数,表示信号在所有频率上的分布。频率 ω 是连续的,因此 DTFT 提供了一个连续的频域表示。
-
周期性信号的频域特性:即使是周期性信号,DTFT 也可以用来分析其频域特性,频谱会显示出周期性特征。
-
频域分析:DTFT 提供了信号的完整频域特性,可以用来分析信号的频率组成以及信号在所有频率上的能量分布。
离散傅里叶变换(DFT,Discrete Fourier Transform):
-
有限长信号:DFT 是对有限长度离散时间信号进行频域分析的工具。它假设信号在时间上是有限的,并通过对有限长度信号进行分析来实现频域表示。
-
离散频率:DFT 的结果是离散的频谱函数,频率分量是离散的。DFT 产生一个有限数量的频域样本,频域上的频率点是离散的,通常为 NNN 个频率点,其中 NNN 是信号的长度。
-
周期性假设:在计算 DFT 时,信号被假设为周期性延拓。实际上,DFT 结果展示了信号在一个周期内的频域特性,但在实际计算中也考虑了信号的周期性延拓。
FFT (Fast Fourier Transform)
FFT介绍:【算法】快速傅里叶变换(FFT)——有史以来最巧妙的算法?_快速傅里叶变换算法-CSDN博客
FFT IP 配置:Vivado中FFT IP核的使用_fft ip核多通道模式-CSDN博客