18、文本处理、向量存储与嵌入技术全解析

文本处理、向量存储与嵌入技术全解析

在数据处理和信息检索领域,高效地处理文本、利用向量存储以及运用文本嵌入技术是至关重要的。本文将深入探讨代码分割、文本按令牌分割、向量存储、文本嵌入模型以及嵌入缓存等关键技术,并通过具体的代码示例展示如何实现这些功能。

1. 代码分割

1.1 Python 代码分割示例

使用 CodeTextSplitter 可以将 Python 代码片段分割成逻辑单元,便于分析和处理。以下是具体的代码示例:

code_splitter = CodeTextSplitter(language="python", chunk_size=50, chunk_overlap=0)
code_chunks = code_splitter.create_documents([code_snippet])
for chunk in code_chunks:
    print(chunk.page_content)
    print("---")

运行上述代码,输出结果如下:

def greet(name):
    print(f"Hello, {name}!")
---
def main():
    name = input("Enter your name: ")
    greet(name)
---
if __name__ == "__main__":
    main()
---

通过这个示例可以看到, CodeTextS

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符  | 博主筛选后可见
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值