提升图像识别性能:探索卷积神经网络与美国手语数据集

引言

在深度学习的世界里,卷积神经网络(CNN)已经成为了图像识别任务的主力军。继上一篇博客中我们使用基础神经网络对手写数字进行分类后,本文将介绍如何利用CNN的强大能力,对更加复杂的美国手语(ASL)数据集进行图像分类。

卷积神经网络的基础

CNN是一种深度学习模型,它特别适合处理图像数据。通过使用卷积层来提取图像特征,CNN能够捕捉到图像的层次性信息,从而在图像分类任务中表现出色。

数据准备

首先,我们需要对ASL数据集进行适当的预处理,以适应CNN模型。

import tensorflow.keras as keras
import pandas as pd

# 加载CSV文件中的数据
train_df = pd.read_csv("data/asl_data/sign_mnist_train.csv")
valid_df = pd.read_csv("data/asl_data/sign_mnist_valid.csv")

# 分离标签和图像数据
y_train = train_df['label']
y_valid = valid_df['label']
x_train = train_df.drop('label', axis=1).values
x_valid = valid_df.drop('label', axis=1).values

# 将标签转换为独热编码
num_classes = 24
y_train = keras.utils.to_categorical(y_train, num_classes)
y_valid = keras.uti
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值