微分中值定理

1,罗尔中值定理

若f(x)
1)在闭区间[a,b]上连续;
2)在开区间(a,b)上可导;
3)在区间端点处的函数值相等,即f(a)=f(b);
则在(a,b)内至少有一点 ε \varepsilon ε使得 f ′ ( ε ) = 0 f'(\varepsilon)=0 f(ε)=0.

证明:
Note: 极值定理:如果f(x)在闭区间[a,b]上连续,则f(x)在此区间内有最大值和最小值。
分三种情况讨论:
1)若f(x)的最大值和最小值都在端点处(可以理解为分f(x)为单调函数),由f(a)=f(b)知,f(x)在此区间内为常函数,显然 f ′ ( ε ) = 0 f'(\varepsilon)=0 f(ε)=0.
2)若f(x)非单调,且在(a,b)上存在最大值,不妨设最大值点在 x = ε x=\varepsilon x=ε处,对于 x ∈ ( a , ε ) , 很 显 然 f ( x ) − f ( ε ) x − ε &gt; = 0 , 则 f ′ ( ε ) = lim ⁡ x → ε − f ( x ) − f ( ε ) x − ε &gt; = 0 x\in(a,\varepsilon),很显然\frac{f(x)-f(\varepsilon)}{x-\varepsilon}&gt;=0,则f&#x27;(\varepsilon)=\lim_{x\to\varepsilon^-}\frac{f(x)-f(\varepsilon)}{x-\varepsilon}&gt;=0 x(a,ε),xεf(x)f(ε)>=0,f(ε)=limxεxεf(x)f(ε)>=0;对于 x ∈ ( ε , b ) , 有 f ( x ) − f ( ε ) x − ε &lt; = 0 , 则 f ′ ( ε ) = lim ⁡ x → ε + f ( x ) − f ( ε ) x − ε &lt; = 0 x\in(\varepsilon,b),有\frac{f(x)-f(\varepsilon)}{x-\varepsilon}&lt;=0,则f&#x27;(\varepsilon)=\lim_{x\to\varepsilon^+}\frac{f(x)-f(\varepsilon)}{x-\varepsilon}&lt;=0 x(ε,b),xεf(x)f(ε)<=0,f(ε)=limxε+xεf(x)f(ε)<=0;所以 f ′ ( ε ) = 0 f&#x27;(\varepsilon)=0 f(ε)=0
3)同理可证f(x)非单调,且在(a,b)上存在最小值的情况。

2,拉格朗日中值定理

若f(x)
1)在闭区间[a,b]上连续;
2)在开区间(a,b)上可导;
则在(a,b)内至少有一点 ε \varepsilon ε使得 f ( b ) − f ( a ) = f ′ ( ε ) ( b − a ) f(b)-f(a)=f&#x27;(\varepsilon)(b-a) f(b)f(a)=f(ε)(ba)成立。

证明:
g ( x ) = f ( b ) − f ( a ) b − a ( x − a ) + f ( a ) − f ( x ) g(x)=\frac{f(b)-f(a)}{b-a}(x-a)+f(a)-f(x) g(x)=baf(b)f(a)(xa)+f(a)f(x)
则g(x)满足
1)在闭区间[a,b]上连续;
2)在开区间(a,b)上可导;
3)g(a)=g(b)=0。
由罗尔中值定理得至少有一点 ε 使 得 g ′ ( ε ) = f ( b ) − f ( a ) b − a − f ′ ( ε ) = 0 , 即 f ( b ) − f ( a ) = f ′ ( ε ) ( b − a ) \varepsilon使得g&#x27;(\varepsilon)=\frac{f(b)-f(a)}{b-a}-f&#x27;(\varepsilon)=0,即f(b)-f(a)=f&#x27;(\varepsilon)(b-a) ε使g(ε)=baf(b)f(a)f(ε)=0f(b)f(a)=f(ε)(ba)

3,柯西中值定理
若函数f(x)和g(x)满足:
1)在闭区间[a,b]上连续;
2)在开区间(a,b)上可导;
3)对于任意的 x ∈ ( a , b ) , g ′ ( x ) 不 等 于 0 x\in(a,b),g&#x27;(x)不等于0 x(a,b)g(x)0
则在(a,b)内至少有一点 ε \varepsilon ε使得 f ( b ) − f ( a ) g ( b ) − g ( a ) = f ′ ( ε ) g ′ ( ε ) \frac{f(b)-f(a)}{g(b)-g(a)}=\frac{f&#x27;(\varepsilon)}{g&#x27;(\varepsilon)} g(b)g(a)f(b)f(a)=g(ε)f(ε)成立。

证明:
1)如果g(a)=g(b),则由罗尔中值定理,在(a,b)范围内至少有一点 ε 使 得 f ′ ( ε ) = 0 \varepsilon使得f&#x27;(\varepsilon)=0 ε使f(ε)=0,与条件3)矛盾,所以此种情况不可能发生。
2)令 h ( x ) = f ( x ) − f ( b ) − f ( a ) g ( b ) − g ( a ) g ( x ) 。 h(x)=f(x)-\frac{f(b)-f(a)}{g(b)-g(a)}g(x)。 h(x)=f(x)g(b)g(a)f(b)f(a)g(x)易得:
1)h(x)在闭区间[a,b]上连续;
2)h(x)在开区间(a,b)上可导;
3) h ( a ) = h ( b ) = f ( a ) g ( b ) − f ( b ) g ( a ) g ( b ) − g ( a ) , 由 罗 尔 中 值 定 理 得 , 至 少 存 在 一 点 ε 使 得 h ′ ( ε ) = f ′ ( ε ) − f ( b ) − f ( a ) g ( b ) − g ( a ) g ′ ( ε ) = 0 , 命 题 得 证 。 h(a)=h(b)=\frac{f(a)g(b)-f(b)g(a)}{g(b)-g(a)},由罗尔中值定理得,至少存在一点\varepsilon使得h&#x27;(\varepsilon)=f&#x27;(\varepsilon)-\frac{f(b)-f(a)}{g(b)-g(a)}g&#x27;(\varepsilon)=0,命题得证。 h(a)=h(b)=g(b)g(a)f(a)g(b)f(b)g(a)ε使h(ε)=f(ε)g(b)g(a)f(b)f(a)g(ε)=0

柯西中值定理的几何意义:
用参数方程表示的曲线上至少有一点,它的切线平行于两端点所在的弦。
在这里插入图片描述

Reference

https://zh.wikipedia.org/wiki/柯西中值定理

  • 6
    点赞
  • 15
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值