海量数据挖掘MMDS week5: 聚类clustering

本文深入探讨了层次聚类算法的理论基础与实践应用,包括聚类概述、难点解析、实例分析、距离度量选择及层次聚类方法介绍。重点阐述了层次聚类在非欧氏空间的应用及示例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

http://blog.csdn.net/pipisorry/article/details/49427989

海量数据挖掘Mining Massive Datasets(MMDs) -Jure Leskovec courses学习笔记 推荐系统Recommendation System之隐语义模型latent semantic analysis

{博客内容:Clustering.  The problem is to take large numbers of points and group them into a small number of groups so that points are much closer to other points in their group than to points in other groups.  This subject, although it has a long history, is sometimes referred to by the retronym "unsupervised learning," because you "learn" something about the data without needed a training set.}

聚类综述Overview

问题形式化描述

聚类难点


聚类实例

   

   

距离度量方法的选择

聚类方法

Note: A topic is just a set of words that appear together frequently.

皮皮blog




层次聚类Hierarchical Clustering

这里只讲凝聚即自底向上的层次聚类方法。

主要思想及问题

欧式空间Euclidean的点和距离表示

层次聚类示例1

合并距离最近的两点

合并距离最近的新点

非欧式空间Non-Euclidean的点和距离表示





皮皮blog

from:http://blog.csdn.net/pipisorry/article/details/49427989

ref: [聚类算法]


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值