[1]关键词:场景生成;场景削减;概率分布;随机优化
[2]参考文献:《一种在微网动态经济调度中考虑风电随机性的方法》
[3]主要内容:Matlab 采用正态分布和韦布尔分布描述风电,光伏和负荷概率分布,采用拉丁超立方采样抽样生成大量场景。
采用快速前代法实现场景削减。
ID:3166673646292647
Matlab程序猿
场景生成和场景削减在现代技术应用中扮演着重要角色。场景生成是指根据先验知识和数据,生成符合实际情况的各种场景。而场景削减则是在生成的场景中,筛选出具有代表性和多样性的子集,以便进行后续的分析和决策。
在动态经济调度中,考虑风电随机性是一项重要任务。传统的经济调度方法通常假设能源的供应是确定性的,然而实际中,可再生能源如风电的波动性很大,其供应量与天气等因素相关,具有一定的随机性。因此,为了更准确地进行经济调度,在考虑风电随机性的情况下,场景生成和场景削减技术被广泛应用。
在这篇文章中,我们将讨论一种基于正态分布和韦布尔分布的场景生成方法,并结合拉丁超立方采样抽样技术,生成大量符合实际情况的场景。其中,正态分布是一种常见的概率分布,用于描述具有对称性的随机变量,而韦布尔分布则适用于描述具有右偏性的随机变量。通过将风电、光伏和负荷的概率分布建模为正态分布和韦布尔分布,我们可以更好地捕捉到它们的随机性特征。
在场景生成的基础上,我们还需要对生成的场景进行削减,以提取出具有代表性和多样性的场景子集。为了实现场景削减,我们采用了快速前代法。该方法通过对场景进行排序,并根据排序结果选择一部分具有代表性的场景,从而实现对场景的削减。通过这种方式,我们可以在保留关键信息的同时,减少生成场景的数量,提高后续决策的效率。
总之,场景生成和场景削减是现代技术应用中不可或缺的步骤。本文介绍了一种基于正态分布和韦布尔分布的场景生成方法,并结合拉丁超立方采样抽样技术实现了大量场景的生成。在此基础上,我们还采用了快速前代法对生成的场景进行削减,以提取出具有代表性和多样性的场景子集。这些方法的应用可以为动态经济调度等领域提供更准确和可靠的数据支持,为决策提供更科学和可行的依据。
[1]关键词:场景生成;场景削减;概率分布;随机优化
相关的代码,程序地址如下:http://wekup.cn/673646292647.html