凸集函数之基本属性和示例

凸函数(Convex functions)之基本属性和示例

1.定义(Definition)
如果dom f是一个凸集,那么函数f:Rn→R是凸的,如果对于所有x,y∈dom f和θ为0≤θ≤1,我们有
在这里插入图片描述

几何上,该不等式表示(x、f(x))和(y、f(y))之间的线段,即x到y的弦。
如果当x=y和0<θ<1中,严格不等式在上式中成立,则函数f是严格凸的。如果−f是凸的,则说f是凹的,如果−f是严格凸的,则说严格凹的。

在这里插入图片描述
一个凸函数的图。图上任意两点之间的和弦(即线段)位于图的上方。

2.扩展值的扩展名(Extended-value extensions)
通过将凸函数定义为其域之外的∞,将其扩展到所有Rn通常是方便的。
如果f是凸的,我们定义它的扩展值扩展˜:Rn→R∪{∞}

在这里插入图片描述
f˜的扩展名在所有Rn上定义,并在R∪{∞}中取值。
当dom f={x|f˜(x)<∞},我们可以从f˜的扩展名中获取我们可以从f˜的扩展名中获取原始函数f的结构域。

对于f˜的扩展名,我们可以将其表示为:对于0<θ<1,

在这里插入图片描述
对于任何x和y。

3.一阶条件(First-order conditions)
假设f是可微的(即,它的梯度∇f存在于domf中的每个点,它是开放的)。
那么f是凸的,当且仅当dom f是凸的并且
在这里插入图片描述
适用于所有的x,y∈dom f。

在这里插入图片描述
如图所示,如果f是凸的和可微的,那么f(x)+∇f(x)T(y−x)≤f(y)对于所有x,y∈domf。

严格凸性也可以用一阶条件来描述:f是严格凸的,当且仅当dom f是凸的,对于x,y∈domf,x≠y,我们有
在这里插入图片描述
对于凹函数,我们有相应的特征:f是凹的,当且仅当dom f是凸的并且
在这里插入图片描述
对于所有的x,y∈dom f。

4.二阶条件(Second-order conditions)
我们现在假设f是两次可微的,也就是说,它的Hessian导数或二阶导数∇2f存在于dom f中的每个点,它是开放的。
那么f是凸的,当且仅当dom f是凸的,它的Hessian是正半定的:对于所有的x∈domf,
在这里插入图片描述
对于R上的函数,这可简化为简单的条件f“(x)≥0。

5.子级集(Sublevel sets)
函数f:Rn→R的α子级集定义为
在这里插入图片描述
凸函数的子级集是凸的,对于α的任何值。证明直接来自凸性的定义:如果x,y∈Cα,那么f(x)≤α和f(y)≤α,所以f(θx+(1−θ)y)≤αfor0≤θ≤1,因此θx+(1−θ)y∈Cα。
相反则不正确:函数可以使它的子级集都是凸的,但不能不是凸函数。例如,f(x)=−ex在R上不是凸的(实际上,它是严格的凹的),但它的所有子级集都是凸的。
如果f是凹的,那么它的α-上级集,由{x∈domf|f(x)≥α}给出,是一个凸集。子级集属性通常是建立一个集凸性的好方法,通过将其表示为凸函数的子级集,或作为凹函数的上级集。

6.Epigraph
函数f:Rn→R的图被定义为
在这里插入图片描述
它是Rn+1的一个子集。一个函数f:Rn→R的Epigraph被定义为
在这里插入图片描述
它是Rn+1的一个子集。(“Epi”的意思是“上面”,所以铭文的意思是“图上”。)
在这里插入图片描述
如图所示,函数f的特征,显示阴影。下边界显示得较深,是f的图。
凸函数的许多结果可以用铭文几何地证明(或解释),并将结果应用于凸集。例如,考虑凸性的一阶条件:
在这里插入图片描述
其中f是凸的,y∈dom f。我们可以用epi f几何地解释这个基本不等式。如果(y,t)∈epi f,那么
在这里插入图片描述
我们可以表达为:
在这里插入图片描述
这意味着由(∇f(x)、−1)定义的超平面支持边界点(x、f(x))处的epi f;
在这里插入图片描述
如图所示,对于可微凸函数f,向量(∇f(x),−1)定义了ff的支持超平面。

7.延森的不等式与扩展(Jensen’s inequality and extensions)
基本不等式,即,
在这里插入图片描述
有时也被称为延森不等式。它很容易地扩展到两个以上的凸组合:如果f是凸的,x1,…,xk∈dom f和θ1…,θk≥0和θ1+··+θk=1,然后
在这里插入图片描述与凸集的情况一样,这个不等式也扩展到无限和、积分和期望值。例如,如果S⊆domf上的p(x)≥0,RSp(x)dx=1,则
在这里插入图片描述
只要积分存在。在最一般的情况下,我们可以接受domf中支持的任何概率测度。如果x是一个随机变量,使得概率为1的x∈domf,而f是凸的,那么我们有
在这里插入图片描述
只要有期望的存在。我们可以通过利用随机变量x来支持{x1,x2},从这个一般形式中恢复基本的不等式(3.1),问题(x=x1)=θ,问题(x=x2)=1−θ。因此,不等式(3.5)刻画了凸性:如果f不是凸的,则有一个随机变量x,x∈dom的概率为f,即f(Ex)>Ef(x)。
所有这些不等式现在都被称为詹森不等式,尽管詹森研究的不等式是非常简单的
在这里插入图片描述
8.不平等(Inequalities)
将延森不等式应用于一些适当的凸函数,可以导出许多著名的不等式。(事实上,凸性和延森不等式可以成为不等式理论的基础。)作为一个简单的例子,考虑算术几何平均不等式:
在这里插入图片描述
对于a,b≥0。函数−logx是凸的;与θ=1/2的Jensen不等式得到
在这里插入图片描述
取双方的指数,收益率。
作为一个不那么平凡的例子,我们证明了老¨的不等式:对于p>1,1/p+1/q=1和x,y∈Rn,
在这里插入图片描述
通过−logx的凸性和具有一般θ的Jensen不等式,得到了更一般的算术-几何平均不等式

在这里插入图片描述
对于a、b≥0和0≤θ≤1有效。正在将其应用于
在这里插入图片描述
产生

在这里插入图片描述
加上i,然后得到yields H¨older’s的不等式。

  • 1
    点赞
  • 9
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值