目标检测问题中的“召回率Recall”、“精确率Precision”

本文深入探讨了机器学习评估指标中的精确率和召回率,解释了True Positive、True Negative、False Positive和False Negative的概念,并分析了它们在猫狗图片识别任务中的应用,指出精确率与召回率之间的平衡关系。
摘要由CSDN通过智能技术生成

继上篇mAP之后,想彻底梳理一下基本概念,今天来搞一搞“召回率”、“精确率”

几个概念

假设有一个测试集中包含了n个小猫和小狗的图片,我们的目标是找出所有的猫。目标是:猫。

(1)True positive:正确找出目标图片;就是正确找出了猫;

(2)True negative:正确找出了哪些不是目标;认为狗就是狗;

(3)False positive:模型将不是目标的图片识别为要找的目标;模型将狗识别成了猫;

(4)False negative:模型将目标图片认为是其他图片,就是没有将目标识别出来;没有将猫识别出来,模型认为它是狗;

精确度Precision

精确度就是在识别出来的图片中,True positive所占的比率

                                                                   precision = \frac{tp}{tp+fp}=\frac{tp}{n}

这个和上一篇中的precision是一样的

召回率Recall

召回率就是正确识别出来猫的个数占测试集中所有的猫的个数:

                                                                            recall = \frac{tp}{tp+fn}

评述

精确率和召回率是最常见的两个指标。

精确率:就是识别出来的结果有多少个是正确的;

召回率:正确的结果有多少被识别出来了;

这两个指标通常是此消彼长的,例如你要是要求精确率高了,那么召回率就不会那么高了。通常需要调整某些参数来达到这两者之间的一个平衡。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值