继上篇mAP之后,想彻底梳理一下基本概念,今天来搞一搞“召回率”、“精确率”
几个概念
假设有一个测试集中包含了n个小猫和小狗的图片,我们的目标是找出所有的猫。目标是:猫。
(1)True positive:正确找出目标图片;就是正确找出了猫;
(2)True negative:正确找出了哪些不是目标;认为狗就是狗;
(3)False positive:模型将不是目标的图片识别为要找的目标;模型将狗识别成了猫;
(4)False negative:模型将目标图片认为是其他图片,就是没有将目标识别出来;没有将猫识别出来,模型认为它是狗;
精确度Precision
精确度就是在识别出来的图片中,True positive所占的比率
precision =
这个和上一篇中的precision是一样的
召回率Recall
召回率就是正确识别出来猫的个数占测试集中所有的猫的个数:
recall =
评述
精确率和召回率是最常见的两个指标。
精确率:就是识别出来的结果有多少个是正确的;
召回率:正确的结果有多少被识别出来了;
这两个指标通常是此消彼长的,例如你要是要求精确率高了,那么召回率就不会那么高了。通常需要调整某些参数来达到这两者之间的一个平衡。