高斯过程分类原理

本文介绍了高斯过程分类的原理,从一元和多元高斯分布的概念出发,阐述了高斯过程的定义及其在二分类问题中的应用。通过贝叶斯原理,探讨了如何利用高斯过程模型进行分类,并给出了相应的概率表达式。
摘要由CSDN通过智能技术生成

高斯过程原理:

       连续型变量中最普遍的分布就是高斯分布,即正态分布,也是学习和生活中接触最广的分布。一元
高斯分布由均值  和方差 2 两个参数所确定。其概率密度形如:

                                   
     多元高斯分布由均值向量 E x ( ) 和协方差矩阵cov( ) 所确定,协方差矩阵式对称且正定,其概率
密度形如:

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值