背景:
作者是ebay研究实验室的Sr. Director & Head. 2005年加入ebay。 加入Ebay之前是a startup focused on multi-attribute fuzzysearch and network CRM的联合创始人。
摘要:
推荐系统组成电子商务网站的核心。在这篇论文中,我们对推荐系统采用一种自上而下的观点,明确挑战和机遇,明确建立电子商务平台的推荐系统的方法。我们用ebay作为范例,这里提供了创新的推荐的机会。经过如此,ebay面临关系高度稀疏的复杂局面。
介绍:
建立电子商务网站的常用方法:基于内容的模型,基于邻居的方法,使用矩阵分解的协同过滤,这些都是建立推荐的非常著名的方法。
从微观经济学上面说,我们可以把商品分为3类,同等的可以替换的,如可乐和百事;作为补充的,如ipod和ipod 面板。
有些购物者非常在意品牌,即使是买补充型产品的时候也会先考虑同品牌的产品。
ebay的规模:
1亿买家和卖家;1000万商品;30000以上的类目。从数据量上面比较,淘宝网的用户、商品都远远超过ebay了。
产品维度:
有一些类目是禁止的,如arms,酒精、烟草等。
卖家经常会对产品有一些个性化的描述,以便区别其他卖家并争取更多的曝光量和更好的价格。
对商品有很多分类:用过的,翻新的,珍藏的、坏的。
买家维度:
买家的年龄、性别。
购买力、价格区间是可以分析的。
卖家维度:
卖家的商品在哪些类目。
好评率是否高,发货时间、描述是否属实都是买家经常考虑的条件。
买家和卖家握手:
买家和卖家的习惯可能不相同。买家搜索词和卖家设置的标题可能不一致。
机遇和挑战:
买家在网站上面要经过很多个时间段。例如:搜索;寻找;观察;重新浏览;出价;购买;为感兴趣的物品买单。这里面的每个阶段,都是推荐系统大有作为的地方。
推荐系统可以利用的信息:query、类目、产品或者物品,甚至卖家和买家信息。
5个W,一个H 。参考
What?
首页有过去的购买信息,流行的信息,能够吸引用户或者让用户回忆起潜在的购买欲望。
Where?
不同的上下文有不同的算法。
不同页面的推荐算法,推荐的过滤条件,甚至检索的数据集合也是不一样的。
When:
购买的时间窗口。
衰减因子。
Why:
给出推荐的原因。购买了还购买,浏览了还浏览,收藏了还收藏等等。
给出的这些原因都是真实的原因吗?
Who:
相对于无经验的买家来说,推荐对于一个非常有经验的买家或者卖家来说可能是无用的,甚至是不受欢迎的。
对于ebay来说,power买家的推荐效果比偶尔的买家效果要差。
如果把推荐系统看作是有预算限制的,意思是推荐的次数不是越多越好。那么对于某些用户,某些场景,可以不出现推荐。这样对于整体的购买转化率更高。这个太难衡量了吧“?
抓取合适的买家维度是比较重要的。
How:
主要介绍矩阵分解。
user-item矩阵
query-item矩阵
item的聚类问题。
基于内容的推荐可以用于冷启动问题。
针对突发流行的物品的识别和推荐。
这篇文章是neel的一篇对自己工作的总结,文章末尾的论文大多数都有他自己的参与。